首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,E为n阶单位矩阵。若A3=O,则( )
设A为n阶非零矩阵,E为n阶单位矩阵。若A3=O,则( )
admin
2019-03-14
53
问题
设A为n阶非零矩阵,E为n阶单位矩阵。若A
3
=O,则( )
选项
A、E—A不可逆,E+A不可逆。
B、E—A不可逆,E+A可逆。
C、E一A可逆,E+A可逆。
D、E—A可逆,E+A不可逆。
答案
C
解析
已知(E—A)(E+A+A
2
)=E—A
3
=E,(E+A)(E—A+A
2
)=E+A
3
=E。故E—A,E+A均可逆。故应选C。
转载请注明原文地址:https://kaotiyun.com/show/KOj4777K
0
考研数学二
相关试题推荐
求下列变限积分函数的导数:(Ⅰ)F(χ)=etdt,求F′(χ)(χ≥0);(Ⅱ)设f(χ)处处连续,又f′(0)存在,F(χ)=∫1χ[∫0tf(u)du]dt,求F〞(χ)(-∞<χ<-∞).
设a,b,c为实数,求证:曲线y=eχ与y=aχ2+bχ+c的交点不超过三个.
已知函数f(χ,y,z)=χ2y2z及方程χ+y+z-3+e-3=e-(χ+y+z),(*)(Ⅰ)如果χ=χ(y,χ)是由方程(*)确定的隐函数满足χ(1,1)=1,又u=f(y,z),y,z),求(Ⅱ)如果z=z(χ
已知齐次方程组为其中ai≠0.(1)讨论a1,a2,…,an和b满足何种关系时方程组有非零解;(2)在方程组有非零解时,写出一个基础解系.
计算二重积分,其中D是由直线x=2,y=2,x+y=1,y+y=3以及x轴与y所围成的平面区域。
微分方程y"+y=x2+1+sinx的特解形式可设为
已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y|x=0=0,y’|x=0=1的解为y=________.
设函数f(x)=lnx+.(Ⅰ)求f(x)的最小值;(Ⅱ)设数列{xn)满足lnxn+存在,并求此极限.
已知y1*=xex+e2x,y2*=xex+e-x),y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解.试求其通解及该微分方程.
设f(x)=2x+3x一2,则当x→0时()
随机试题
附有注册会计师出具审计报告的财务报告的可信度将大大提高,对财务分析的影响正确的有()。
A.直接致癌物B.促癌剂C.间接致癌物D.前致癌物E.近致癌物必须经过体内代谢活化才具有致癌作用的物质,称为
A.溢出性蛋白尿B.微量白蛋白尿C.非选择性白蛋白尿D.体位性蛋白尿E.渗出性蛋白尿多发性骨髓瘤的蛋白尿为
《药品生产许可证》的变更分为许可事项变更和登记事项变更。下列属于许可事项变更的是()
某人民检察院立案侦查该市工商局长利用职权报复陷害他人,侦查中发现犯罪已过追诉时效期限。人民检察院应当如何处理?
中央银行通过调节商业银行持有的()规模,来改变商业银行体系的贷款能力,控制整个经济的货币供给量。
社会主义法治理念的基本内涵包括()。
试述课题论证的基本内容。
Australianchildrenarevisitingsocialmediawebsitesatanincreasinglyyoungerage,anewsurveysuggests,withoneinfive"
IP地址块202.113.79.128/27、202.113.79.160/27和202.113.79.192/27经过聚合后可用的地址数为()。
最新回复
(
0
)