首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,…,αt都是非齐次线性方程组Aχ=b的解,如果c1α1+c2α2+…+ctαt仍是Aχ=b的解,则c1+c2+…+ct=_______.
已知α1,α2,…,αt都是非齐次线性方程组Aχ=b的解,如果c1α1+c2α2+…+ctαt仍是Aχ=b的解,则c1+c2+…+ct=_______.
admin
2019-03-18
55
问题
已知α
1
,α
2
,…,α
t
都是非齐次线性方程组Aχ=b的解,如果c
1
α
1
+c
2
α
2
+…+c
t
α
t
仍是Aχ=b的解,则c
1
+c
2
+…+c
t
=_______.
选项
答案
1.
解析
因为α
i
是Aχ=b的解,所以,Aα
i
=b.
若c
1
α
1
+c
2
α
2
+…+c
t
α
t
是Aχ=b的解,则
A(c
1
α
1
+c
2
α
2
+…+c
t
α
t
)=c
1
Aα
1
+c
2
Aα
2
+…+c
t
Aα
t
=(c
1
+c
2
+…+c
t
)b=b.
故c
1
+c
2
+…+c
t
=1.
转载请注明原文地址:https://kaotiyun.com/show/L1V4777K
0
考研数学二
相关试题推荐
设平面图形A由x2+y2≤2x与y≥x所确定,求图形A绕直线x=2旋转一周所得旋转体的体积.
函数y=ln(1一2x)在x=0处的n阶导数y(n)(0)=________.
求微分方程(x2—1)dy+(2xy一cosx)dx=0满足初始条件y|x=0=1的特解.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,α3线性表示.
设向量组I:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示.下列命题正确的是
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a).(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0
若α1,α2,α3线性无关,那么下列线性相关的向量组是
设一阶非齐次线性微分方程y’+p(x)y=Q(x)有两个线性无关的解y1,y2,若αy1+βy2也是该方程的解,则应有α+β=____________.
设an=,证明:{an}收敛,并求.
随机试题
下列哪项不是机会致病菌引起医院感染率上升的原因
痢疾的病位在
工程的概、预算主要发生在()。
督察长连续3次考试成绩不及格的,中国证监会可免除其职务。()
(2014年真题)期刊的栏目设计应该()。
简述当代儿童发展观的基本内容。
决定警察必要性的直接因素是()。
请用不超过200字的篇幅,概括出给定材料所反映的主要问题。要求:全面,有条理,有层次。从政府制定政策的角度,提出解决给定资料所反映问题的对策建议。要求:有针对性,有条理,切实可行。字数不超过350字。
“渐”的作用,就是用每步相差极微极缓的方法来隐蔽时间的过去与事物的变迁的痕迹,使人误认其为恒久不变。这真是造物主骗人的一大诡计!这有一个比喻的故事:某农夫每天朝晨抱了犊而跳过一沟,到田里去工作,夕暮又抱了它跳过沟回家。每日如此,未尝间断。过了一年,犊已渐大
要在Web浏览器中查看某一电子商务公司的主页,应知道()。
最新回复
(
0
)