首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设x∈(0,1),证明 (1)(1+x)ln2(1+x)<x2;
设x∈(0,1),证明 (1)(1+x)ln2(1+x)<x2;
admin
2017-04-24
85
问题
设x∈(0,1),证明
(1)(1+x)ln
2
(1+x)<x
2
;
选项
答案
(1)令 φ(x)=(1+x)ln
2
(1+x) 一x
2
,φ(0)=0 φ’(x)= ln
2
(1+x) + 2ln(1+x) 一2x, φ’(0)=0 于是φ"(x)在(0,1)内严格单调减少,φ"(0)=0,所以在(0,1)内φ"(x)<0.于是φ’(x)在(0,1)内严格单调减少,又φ’(0)=0,故在(0,1)内φ’(x)<0.故φ(x)在(0,1)内严格单调减少,又φ(0)=0,故在(0,1)内φ(x)<0. [*] 由(1)知f’(x)<0,(当x∈(0,1)),于是可知f(x)在(0,1)上严格单调减少,f(1)=[*]一1,故当x∈(0,1)时. [*] 不等式左边证毕,又 [*] 故当x∈(0,1)时,f(x)=[*] 不等式右边证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/d8t4777K
0
考研数学二
相关试题推荐
∫xarcsinxdx.
[*]
求下列微分方程的通解。(ex+y-ex)dx+(ex+y+ey)dy=0
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
求极限.
设a1=2,an+1=1/2(an+1/an)(n=1,2,…),证明存在,并求出数列的极限.
数列极限
若函数f(x)在(0,+∞)上有定义,在x=1点处可导,且对于任意的正数a,b总有f(ab)=f(a)+f(b),证明:f(x)在(0,+∞)上处处可导,且f’(x)=.
随机试题
以下所列抗菌药物的给药途径中,最正确的是
CT扫描中常用的FOV是指
瘢痕性类天疱疮在口腔中病损的最常见部位是
潮湿环境下,照明电源的电压不大于()V。
新增付款方式。付款方式编码:01付款方式名称:银行汇票进行票据管理:不需要
以下关于公司型基金的表述中,正确的是()。
将细菌培养物由供氧条件转为厌氧条件,下列过程中会加快的一种是()。
王充认为教育的最高目标是培养“鸿儒”,其有别于儒生、通人、文人的显著特征是
表达式3.6-5/2+1.2+5%2的值是
Whydoestheprofessormention$20bill?
最新回复
(
0
)