首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(n,b)使f’(ξ)=0.
设f(x)在[a,b]可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(n,b)使f’(ξ)=0.
admin
2019-02-20
54
问题
设f(x)在[a,b]可导,且f’
+
(a)与f’
-
(b)反号,证明:存在ξ∈(n,b)使f’(ξ)=0.
选项
答案
【证法一】 由极限的不等式性质和题设知,存在δ>0使得a+δ<b-δ,且 [*] 于是 f(a+δ)>f(a),f(b-δ)>f(b). 这表明f(x)在[a,b]上的最大值必在(a,b)内某点取到,即存在ξ∈(a,b)使得[*]由费马定理知f’(ξ)=0. 【证法二】 f(x)在[a,b]必有最大值.若最大值在x=a(或x=b)取到,由最值点处的导数性质知,f’
+
(a)≤0(f’
-
(b)≥0),这与已知矛盾.因此f(x)在[a,b]的最大值不能在x=a及x=b取到,即[*]ξ∈(a,b)使得[*]是f(x)的极值点,f’(ξ)=0.
解析
因f(x)在[a,b]上可导,因而必连续,故存在最大值和最小值.如能证明最大值或最小值在(a,b)内取得,那么这些点的导数值必为零,从而证明了命题.注意,由于题设条件中未假设f’(x)连续,所以不能用连续函数的介值定理来证明.证明时不妨设f’
+
(a)>0且f’
-
(b)<0.
转载请注明原文地址:https://kaotiyun.com/show/LFP4777K
0
考研数学三
相关试题推荐
已知A=,求A的特征值与特征向量,并指出A可以相似对角化的条件.
设f(x)=xTAx为一n元二次型,且有Rn中的向量x1和x2,使得f(x1)>0,f(x2)<0.证明:存在Rn中的向量x0≠0,使f(x0)=0.
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解.
设A为m×n矩阵,B为n×p矩阵,证明:矩阵方程AX=B有解的充分必要条件是r(A)=r(A┆B).
曲线y=k(x2一3)2在拐点处的法线通过原点,求k的值.
设f(x)在区间[0,+∞)内二阶可导,且在x=1处与曲线y=x3一3相切,f(x)在(0,+∞)内与曲线y=x3一3有相同的凹向,求方程f(x)=0在(1,+∞)内实根的个数.
求曲线y=—2在其拐点处的切线方程.
假设随机变量X在区间[一1,1]上均匀分布,则arcsinX和arccosX的相关系数等于().
设区域D由x=0,y=0,x+y=,x+y=1围成,若I1=[ln(x+y)]dxdy,I2=(x+y)3dxdy,I3=sin3(x+y)dxdy,则().
随机试题
硬盘驱动器采用的磁头是_______。
带下过少的临床选方为
狂犬病是由狂犬病毒引起的主要经()
有关佝偻病的预防,下列不正确的是
根据《债券登记、托管与结算业务实施细则》的规定,债券回购交易按( )进行申报。
通过债务重组,(),同时其他贷款条件没有因此明显恶化的,可考虑办理债务重组。
()是对企业整体框架的设计。
(2016·山东)根据《中华人民共和国预防未成年人犯罪法》的规定,未成年人严重不良行为包括()
班门弄斧:布鼓雷门
ChristmasEve(圣诞前夜)arrivesatmyhouseeachyear.Thecenterofthecelebrationisdinner.Mymotherspendsdayspreparingar
最新回复
(
0
)