首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2017年)设函数f(x)在区间[0,1]上具有2阶导数,且f(1)>0,证明: 方程f(x)f"(x)+(f’(x))2=0在区间(0,1)内至少存在两个不同实根.
(2017年)设函数f(x)在区间[0,1]上具有2阶导数,且f(1)>0,证明: 方程f(x)f"(x)+(f’(x))2=0在区间(0,1)内至少存在两个不同实根.
admin
2018-06-30
77
问题
(2017年)设函数f(x)在区间[0,1]上具有2阶导数,且f(1)>0,
证明:
方程f(x)f"(x)+(f’(x))
2
=0在区间(0,1)内至少存在两个不同实根.
选项
答案
由上题知f(0)=f(b)=0,根据罗尔定理,存在c∈(0,b)[*](0,1),使得 f’(c)=0. 令F(x)=f(x)f’(x),由题设知F(x)在区间[0,b]上可导,且 F(0)=0,F(c)=0,F(b)=0. 根据罗尔定理,存在ξ∈(0,c),η∈(c,b),使得F’(ξ)=F’(η)=0,即ξ,η是方程f(x)f(x)+(f’(x))
2
=0在区间(0,1)内的两个不同实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/LRg4777K
0
考研数学一
相关试题推荐
设向量组α1=[a11,a21,…,an]T,α2=[a11,a22,…,an2]T,…,αs=[a1s,a2s,…,a1ts]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
设四元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[-1,2,2,1]T.问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设四元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[-1,2,2,1]T.求线性方程组(Ⅰ)的基础解系;
若随机变量序列X1,X2,…,Xn,…满足条件试证明:{Xn}服从大数定律.
已知y=y(x)是微分方程(x2+y2)dy=dx-dy的任意解,并在y=y(x)的定义域内取x0,记y0=y(x0).证明:
微分方程y’’-4y=e2x的通解为y=________
设f(x)在闭区间[1,2]上可导,证明:E∈(1,2),使f(2)-zf(1)=ξf’(ξ)-f(ξ).
函数不连续的点集为()
z’x(x0,y0)=0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的()
设二次方程x2-Xx+Y=0的两个根相互独立,且都在(0,2)上服从均匀分布,分别求X与Y的概率密度.
随机试题
新闻单位开展公共关系工作的优势表现在哪些方面?
属于早期梅毒的是()
关于地榆,以下哪种说法不正确
项目进度控制总目标可按单位工程分解为()分目标。
公安局认定朱某嫖娟,对其拘留15日并处罚款5000元。关于此案,下列说法中不正确的是()。
下列不属于股票加看跌期权组合的有()。
Shoppinghasalwaysbeensomethingofanimpulseactivity,inwhichobjectsthatcatchourfancvwhilestroilingareimmediately
中国古代园林理水之法一般有掩、隔、破三种。()
阅读材料,并回答后面的问题。森林里有一所“动物学校”开设了跑步、跳跃、爬行、游泳、飞行五门课程,并规定学生要全部掌握,第一批学生有鸭子、兔子、松鼠、鹰和泥鳅。鸭子游泳一向突出,飞行勉强及格,由于跑得慢,他不得不每天放学后留在学校练习跑步,但期末考试成绩
有如下的运算符重载函数定义:doubleoperator+(inti,intk){returndouble(i+k);}但定义有错误,对这个错误最准确的描述是()。
最新回复
(
0
)