首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2017年)设函数f(x)在区间[0,1]上具有2阶导数,且f(1)>0,证明: 方程f(x)f"(x)+(f’(x))2=0在区间(0,1)内至少存在两个不同实根.
(2017年)设函数f(x)在区间[0,1]上具有2阶导数,且f(1)>0,证明: 方程f(x)f"(x)+(f’(x))2=0在区间(0,1)内至少存在两个不同实根.
admin
2018-06-30
89
问题
(2017年)设函数f(x)在区间[0,1]上具有2阶导数,且f(1)>0,
证明:
方程f(x)f"(x)+(f’(x))
2
=0在区间(0,1)内至少存在两个不同实根.
选项
答案
由上题知f(0)=f(b)=0,根据罗尔定理,存在c∈(0,b)[*](0,1),使得 f’(c)=0. 令F(x)=f(x)f’(x),由题设知F(x)在区间[0,b]上可导,且 F(0)=0,F(c)=0,F(b)=0. 根据罗尔定理,存在ξ∈(0,c),η∈(c,b),使得F’(ξ)=F’(η)=0,即ξ,η是方程f(x)f(x)+(f’(x))
2
=0在区间(0,1)内的两个不同实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/LRg4777K
0
考研数学一
相关试题推荐
设D=((x,y)|a≤x≤b,c≤y≤d),若f’’xy与f’’yx在D上连续,证明:∫∫Df’’xy(z,y)dxdy=∫∫Df’’yx(z,y)dxdy;
设四元齐次线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1[0,1,1,0]T+k2[-1,2,2,1]T.求线性方程组(Ⅰ)的基础解系;
设随机变量X在[0,π]上服从均匀分布,求Y=sinX的密度函数.
假设随机变量X服从参数为λ的指数分布,求随机变量Y=1-e-λX的概率密度函数fy(y).
求微分方程xy’+y=xex满足y(1)=1的特解.
设φ(x)是以2π为周期的连续函数,且Ф’(x)=φ(x),Ф(0)=0.求方程y’+ysinx=φ(x)ecosx的通解;
已知y=y(x)是微分方程(x2+y2)dy=dx-dy的任意解,并在y=y(x)的定义域内取x0,记y0=y(x0).证明:均存在.
已知y=y(x)是微分方程(x2+y2)dy=dx-dy的任意解,并在y=y(x)的定义域内取x0,记y0=y(x0).证明:
z’x(x0,y0)=0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的()
随机试题
集体主义是由中国革命道德的()的核心所决定的。
生产性项目总投资包括铺底流动资金和:
某单层双跨等高钢筋混凝土柱厂房。其平面布置图、排架简图及边柱尺寸如图1-18所示。该厂房每跨各设有20/5t桥式软钩吊车两台。吊车工作级别为A5级,吊车参见表1-1。已知,作用在每个吊车车轮上的横向水平荷载(标准值)为TQ,试问:在进行排架计算时,作
在专项预案的基础上,根据具体情况而编制的,针对特定的具体场所,通常是该类型事故风险较大的场所、装置或重要防护区域等所制定的预案,这种预案属于()。
实行金融期货交易的限仓制度目的有()。
资产负债表是()。
WBS的编码系统应该帮助项目成员()。
在数据库设计中用关系模型来表示实体和实体间的联系。关系模型的结构是()。
Completetheformbelow.WriteNOMORETHANTHREEWORDSforeachanswer.
A、Schoolsuseprivatedetectionservices.B、Teachersdiscussessaytopicswiththeirstudents.C、Teachersaskstudentstoturni
最新回复
(
0
)