首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为正交矩阵,证明: 若|A|= —1,则|E+A|=0。
设A为正交矩阵,证明: 若|A|= —1,则|E+A|=0。
admin
2019-03-23
61
问题
设A为正交矩阵,证明:
若|A|= —1,则|E+A|=0。
选项
答案
若|A|= —1,则 |E+A|=|AA
T
+A|=|A|.|A
T
+E|= —|(A+E)
T
|= —|E+A|, 所以|E+A|=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/LTV4777K
0
考研数学二
相关试题推荐
求极限
设a>0,求f(x)=的最值.
设A是n阶实反对称矩阵,证明(E-A)(E+A)-1是正交矩阵.
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
若α1,α2,α3线性无关,那么下列线性相关的向量组是
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵,其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
求二阶常系数线性微分方程y"+λy’=2x+1的通解,其中λ为常数.
设随机变量(X,Y)的概率密度为f(x,y)=,求(1)系数k;(2)边缘概率密度;(3)X和Y是否独立.
设A为3阶矩阵,E为3阶单位矩阵,α,β是线性无关的3维列向量,且A的秩r(A)=2,Aα=β,Aβ=α,则|A+3E|为()
设二次型f(χ1,χ2,χ3)=(a-1)χ12+(a-1)χ22+2χ32+2χ1χ2(a>0)的秩为2.(1)求a;(2)用正交变换法化二次型为标准形.
随机试题
业主与物业管理企业间的物业管理关系基于()
关于腕部骨化中心,下列那一项是错误的
病人李某,腹膜炎术后采取半坐卧位的目的是
案情:陈某见熟人赵某做生意赚了不少钱便产生歹意,勾结高某,谎称赵某欠自己10万元货款未还,请高某协助索要,并承诺要回款项后给高某1万元作为酬谢。高某同意。某日,陈某和高某以谈生意为名把赵某诱骗到稻香楼宾馆某房间,共同将赵某扣押,并由高某对赵某进行看管。次日
如果个人委托代理人对个人信用报告提出异议申请,代理人须提供()。
下列情形中,需办理注销税务登记的有()。
教育目的的性质和方向是由()决定的。
(1)资料失真(2)经济普查(3)经济损失(4)经济出现新增长(5)数据更新
①建立一些新的交通网和新的管理制度,都是为了要把若干互相冲突的地区,重新放在一个系统之内②朝代刚兴盛的时候,新秩序产生,各个地区可以重新调节,彼此形成互补的关系③自古以来有一句话:分久必合,合久必分。朝代由盛转衰是一定的,开国时多是兴盛太平,结束时必是
NinetypercentofAmericansknowthatmostoftheircompatriotsareoverweight,butjust40percentbelievethemselvestobetoo
最新回复
(
0
)