首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与(Ⅱ等价?当a为何值时,向量组(Ⅰ
设向量组(Ⅰ)α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ)β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(Ⅰ)与(Ⅱ等价?当a为何值时,向量组(Ⅰ
admin
2021-02-25
73
问题
设向量组(Ⅰ)α
1
=(1,0,2)
T
,α
2
=(1,1,3)
T
,α
3
=(1,-1,a+2)
T
和向量组(Ⅱ)β
1
=(1,2,a+3)
T
,β
2
=(2,1,a+6)
T
,β
3
=(2,1,a+4)
T
.试问:当a为何值时,向量组(Ⅰ)与(Ⅱ等价?当a为何值时,向量组(Ⅰ)与(Ⅱ)不等价?
选项
答案
对(α
1
,α
2
,α
3
┊β
1
,β
2
,β
3
)作初等行变换,得 [*] (1)当a≠-1时,r(α
1
,α
2
,α
3
)=3,线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
i
(i=1,2,3)均有唯一解,所以β
1
,β
2
,β
3
可由向量组(Ⅰ)线性表示. 由于行列式 [*] 故对任意a,方程组x
1
β
1
+x
2
β
2
+x
3
β
3
=α
i
(i=1,2,3)都有唯一解,即向量组α
1
,α
2
,α
3
能由向量组(Ⅱ)线性表示. 因此,当a≠-1时,向量组(Ⅰ)与(Ⅱ)等价. (2)当a=-1时,有 [*] 由于秩r(α
1
,α
2
,α
3
)≠r(α
1
,α
2
,α
3
,β
1
),所以线性方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
无解,故β
1
不能由α
1
,α
2
,α
3
线性表示.因此,向量组(Ⅰ)与(Ⅱ)不等价.
解析
本题考查两向量组是否等价与其对应的两组线性方程是否有解的关系.若向量组(Ⅰ)与(Ⅱ)等价,即向量组(Ⅰ)与(Ⅱ)可以互相线性表示.也就是两组线性方程组都有解,若向量组(Ⅰ)与(Ⅱ)不等价,则在两组线性方程组中至少有一个方程无解.
转载请注明原文地址:https://kaotiyun.com/show/LY84777K
0
考研数学二
相关试题推荐
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间(,1)内有且仅有一个实根;(2)记上题中的实根为xn,证明xn存在,并求此极限。[img][/img]
设f(x)和g(x)在[a,b]上连续.试证:(∫abf(x)g(x)dx)2≤∫abf2(x)dx.∫abg2(x)dx.
设A为3阶方阵,A*是A的伴随矩阵,A的行列式,求行列式|(3A)-1=2A*|的值.
设f(χ)在[a,b]上连续且单调增加,证明:∫abχf(χ)dχ≥∫abf(χ)dχ.
设u=u(x,y,z)连续可偏导,令(1)若,证明:u仅为θ与φ的函数.(2)若,证明:u仅为r的函数.
设实对称矩阵A=,求可逆矩阵P,使P一1AP为对角矩阵,并计算行列式|A一E|的值.
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.若β=α1+α2+α3,求方程组Ax=β的通解.
设f(x,y)在点(0,0)的某邻域内连续,且满足,则函数f(x,y)在点(0,0)处().
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为()
随机试题
公证员在办理出生公证时,应当注意审查的问题有哪些?
A.发热恶热,汗出B.发热恶热,汗多C.恶寒,无汗D.恶寒发热,汗出火热证的临床表现
新生儿肺透明膜病,呼吸困难发生在生后
【背景资料】某城市郊区新建一级公路长3km,路面设计宽度15m,含中型桥梁一座。路面面层结构为沥青混凝土。粗粒式下面层厚8cm,中粒式中面层厚6cm,细粒式上面层厚4cm。经批准的路面施工方案为:沥青混凝土由工厂集中厂拌(不考虑沥青拌合厂设备安
个人投资者在证券经纪商处开立证券交易结算资金账户时,必须提交()。
教学方法的具体意义体现在()
父母或者其他监护人应当尊重未成年人(),必须使适龄未成年人依法入学接受并完成义务教育,不得使接受义务教育的未成年人辍学。
下列没有歧义的一句是( )。
Low-rentHouses
设y=f(x)是区间[0,1]上的任一非负连续函数。试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
最新回复
(
0
)