首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,B是n×m矩阵,已知Em+AB可逆. 设 其中a1b1+a2b2+a3b3=0.证明:W可逆,并求W-1.
设A是m×n矩阵,B是n×m矩阵,已知Em+AB可逆. 设 其中a1b1+a2b2+a3b3=0.证明:W可逆,并求W-1.
admin
2018-09-25
20
问题
设A是m×n矩阵,B是n×m矩阵,已知E
m
+AB可逆.
设
其中a
1
b
1
+a
2
b
2
+a
3
b
3
=0.证明:W可逆,并求W
-1
.
选项
答案
[*] =E+[a
1
,a
2
,a
3
][b
1
,b
2
,b
3
][*]E+AB. 由(1)知E+AB可逆,则E+BA可逆,且(E+BA)
-1
=E-B(E+AB)
-1
A,反之若E+BA可逆,则E+AB可逆,且(E+AB)
-1
=E-A(E+BA)
-1
B. 因为E+BA=E+[b
1
,b
2
,b
3
][a
1
,a
2
,a
3
]
T
=E+[a
1
b
1
+a
2
b
2
+a
3
b
3
]=E+O=E, 故E+BA可逆,(E+BA)
-1
=E. 故W=E+AB可逆,且 W
-1
=E-A(E+BA)
-1
B=E-[a
1
,a
2
,a
3
]
T
.E.[b
1
,b
2
,b
3
] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Leg4777K
0
考研数学一
相关试题推荐
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
若A是对称矩阵,B是反对称矩阵,则AB是反对称矩阵的充要条件是AB=BA.
设A.B是n阶矩阵,E—AB可逆,证明E—BA可逆.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=kα1,Aα2=lα1+kα2,Aα3=lα2+kα3,l≠0,证明α1,α2,α3线性无关.
设A,B都是m×n矩阵,则r(A+B)≤r(A)+r(B).
已知f(x)=,证明f′(x)=0有小于1的正根.
设有参数方程0≤t≤π.(Ⅰ)求证该参数方程确定y=y(x),并求定义域;(Ⅱ)讨论y=y(x)的可导性与单调性;(Ⅲ)讨论y=y(x)的凹凸性.
设当x>0时,方程kx+=1有且仅有一个解,求k的取值范围.
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
已知线性方程组有无穷多解,而A是3阶矩阵,且分别是A关于特征值1,-1,0的三个特征向量,求矩阵A.
随机试题
管外窜通是指()或水泥环与井壁之间的窜通。
卫生分析的伦理评价不包括
A.瘘管切B.肛瘘切除C.挂线疗法D.分期手术低位单纯性肛瘘的治疗采用
下列关于PE抗凝治疗叙述错误的是
A.猪链球菌B.大肠杆菌C.沙门氏菌D.产气荚膜梭菌E.猪痢疾短螺旋体某猪场新生仔猪排黄色浆状稀粪,内含凝乳小片。取病死猪场黏膜接种麦康凯琼脂,可长出红色菌落,该病例最可能的致病病原是()
A.链球菌B.猪瘟病毒C.食盐中毒D.维生素D缺乏E.维生素E-硒缺乏引起猪化脓性脑炎的病因是
更换新账簿时,如有余额,则在新账簿中的第一行摘要栏内注明“上年结转”。()
“哲学能启迪智慧,使人聪明,学好了哲学就会使人聪明起来。”请谈谈你对这句话的看法。
什么是信息社会?它具有哪些特点?
下列选项中,不属于网络安全方案要完成的任务是()。
最新回复
(
0
)