首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0,证明: (1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,η≠ξ,使得f"(
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0,证明: (1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,η≠ξ,使得f"(
admin
2019-05-11
72
问题
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0,证明:
(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);
(2)在(a,b)内至少存在一点η,η≠ξ,使得f"(η)=f(η).
选项
答案
(1)由加强型的积分中值定理知,至少存在一点c∈(a,b),使得[*] 设G(x)=e
-x
f(x),则G(x)在[a,b]上连续,在(a,b)内可导,且G(a)=G(b)=G(c)=0,G’(x)=e
-x
f’(x)一e
-x
f(x)=e
-x
[f’(x)一f(x)].由罗尔定理知,分别存在ξ
1
∈(a,c)和ξ
2
∈(c,b),使得G’(ξ
1
)=G’(ξ
2
)=0,从而f’(ξ
1
)=f(ξ
2
),f’(ξ
2
)=f(ξ
2
). (2)设F(x)=e
x
[f’(x)一f(x)],则F(x)在[a,b]上连续,在(a,b)内可导,且F(ξ
1
)=F(ξ
2
)=0,则 F’(x)=e
x
[f"(x)一f’(x)]+e
x
[f’(x)一f(x)]=e
x
[f”(x)一f(x)]. 对F(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,即存在η∈(ξ
1
,ξ
2
),使得F’(η)=0,故有 f"(η)=f(η),且η≠ξ
i
(i=1,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/LfV4777K
0
考研数学二
相关试题推荐
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
求z=z2+12χy+2y2在区域4χ2+y2≤25上的最值.
设u=u(χ,y,z)连续可偏导,令(1)若=0,证明:u仅为θ与φ的函数.(2)若,证明:u仅为r的函数.
设u=f(χ,y,χyz),函数z=z(χ,y)由eχyz=∫χyzh(χy+z-t)dt确定,其中f连续可偏导,h连续,求.
设f(χ)在[0,1]上二阶可导,且f(0)=f(1)=0.证明:存在ξ∈(0,1),使得f〞(ξ)=
求微分方程cosy-cosχsin2y=siny的通解.
求抛物线y2=4x上的点,使它与直线x-y+4=O相距最近.
设f’(x)=arcsin(x一1)2,f(0)=0,求∫01f(x)dx。
矩形闸门宽口米,高h米,垂直放在水中,上边与水面相齐,闸门压力为().
随机试题
超价观念与强迫观念最主要的区别是
许多性传播疾病可经胎盘、产道等途径由母亲传给胎儿,这种传播途径称为
患者,男性,56岁。肝硬化病史7年,此次因腹水入院治疗,某日大量利尿放腹水后出现肝性脑病。导致该患者肝性脑病最主要的诱因是
波形梁钢护栏的技术要求有外观质量、外形尺寸、材料要求、防腐层厚度、防腐层附着量、防腐层均匀性、防腐层附着性、耐盐雾性能共8项。()
甲公司一车间生产的半成品本月用途广泛,下列用途中,应作为销售缴纳增值税的有( )。
相对大型和特大型企业而言,中小企业的资金运行特点有()
房地产企业持有的下列资产中,应作为投资性房地产进行列报的有()。
经济学家:美国的个人所得税是累进税,税法极其复杂。想诚实纳税的人经常因理解错误,而出现申报错误;而故意避税的人总能找到税法的漏洞。一般而言,避税空间的大小与税制的复杂程度成正比,避税能力的高低与纳税人收入水平成正比。复杂税制造成的避税空间大多会被富人利用,
在软件开发中,下面任务不属于设计阶段的是
要使一个命令按钮成为图形命令按钮,则应设置的属性是()。
最新回复
(
0
)