首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0,证明: (1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,η≠ξ,使得f"(
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0,证明: (1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,η≠ξ,使得f"(
admin
2019-05-11
54
问题
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0,证明:
(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);
(2)在(a,b)内至少存在一点η,η≠ξ,使得f"(η)=f(η).
选项
答案
(1)由加强型的积分中值定理知,至少存在一点c∈(a,b),使得[*] 设G(x)=e
-x
f(x),则G(x)在[a,b]上连续,在(a,b)内可导,且G(a)=G(b)=G(c)=0,G’(x)=e
-x
f’(x)一e
-x
f(x)=e
-x
[f’(x)一f(x)].由罗尔定理知,分别存在ξ
1
∈(a,c)和ξ
2
∈(c,b),使得G’(ξ
1
)=G’(ξ
2
)=0,从而f’(ξ
1
)=f(ξ
2
),f’(ξ
2
)=f(ξ
2
). (2)设F(x)=e
x
[f’(x)一f(x)],则F(x)在[a,b]上连续,在(a,b)内可导,且F(ξ
1
)=F(ξ
2
)=0,则 F’(x)=e
x
[f"(x)一f’(x)]+e
x
[f’(x)一f(x)]=e
x
[f”(x)一f(x)]. 对F(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,即存在η∈(ξ
1
,ξ
2
),使得F’(η)=0,故有 f"(η)=f(η),且η≠ξ
i
(i=1,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/LfV4777K
0
考研数学二
相关试题推荐
求y=f(χ)=的渐近线.
设f(χ)连续,证明:∫0χ[∫0tf(u)du]dt=∫0χf(t)(χ-t)dt.
证明:sinnχcosnχdχ=2-nsinnχdχ.
设f(χ)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明:对任意的a>0,b>0,存在ξ,η∈(0,1),使得=a+b.
改变积分次序f(χ,y)dy(a>0).。
设z=f(eχsiny,χ2+y2),且f(u,v)二阶连续可偏导,求.
设PQ为抛物线y=等的弦,它在此抛物线过P点的法线上,求PQ长度的最小值.
设函数f(x)可导,且曲线y=f(x)在点(x0,f(x0))处的切线与直线y=2一x垂直,则当△x→0时,该函数在x=x0处的微分dy是()
微分方程y"+y=x2+1+sinx的特解形式可设为()
以yOz坐标面上的平面曲线段y=f(z)(0≤z≤h)绕z轴旋转所构成的旋转曲面和xOy坐标面围成一个无盖容器,已知它的底面积为16πcm3,如果以3cm3/s的速率把水注入容器,水表面的面积以πcm3/s增大,试求曲线y=f(z)的方程.
随机试题
粪便标本可进行直接镜检的病原菌是()
一般来说,婴儿期的睡眠时间为()。
咨询单位提交的咨询报告如果不符合合同约定,委托人有权()。
根据《注册造价工程师管理办法》,注册造价工程师的权利包括()。
期货公司会员应当建立客户资料档案,未经客户允许,不得向任何人透露,应当为客户保密。()
下列选项中,证券公司、证券投资咨询机构或者其他财务顾问机构不得担任独立财务顾问的情形是()。
下列经济业务或事项符合《企业会计准则第13号——或有事项》规定的有()。
商品的使用价值是商品的()。
Fromhairspraystohairpieces,fromreducingdietstotwenty-four-hourfitnesscenters,fromfalseeyelashestobluecontactle
A、Sandwiches.B、Fruits.C、Pies.D、Cookies.C
最新回复
(
0
)