首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0,证明: (1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,η≠ξ,使得f"(
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫abf(x)dx=0,证明: (1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ); (2)在(a,b)内至少存在一点η,η≠ξ,使得f"(
admin
2019-05-11
45
问题
设函数f(x)在[a,b]上有连续导数,在(a,b)内二阶可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0,证明:
(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);
(2)在(a,b)内至少存在一点η,η≠ξ,使得f"(η)=f(η).
选项
答案
(1)由加强型的积分中值定理知,至少存在一点c∈(a,b),使得[*] 设G(x)=e
-x
f(x),则G(x)在[a,b]上连续,在(a,b)内可导,且G(a)=G(b)=G(c)=0,G’(x)=e
-x
f’(x)一e
-x
f(x)=e
-x
[f’(x)一f(x)].由罗尔定理知,分别存在ξ
1
∈(a,c)和ξ
2
∈(c,b),使得G’(ξ
1
)=G’(ξ
2
)=0,从而f’(ξ
1
)=f(ξ
2
),f’(ξ
2
)=f(ξ
2
). (2)设F(x)=e
x
[f’(x)一f(x)],则F(x)在[a,b]上连续,在(a,b)内可导,且F(ξ
1
)=F(ξ
2
)=0,则 F’(x)=e
x
[f"(x)一f’(x)]+e
x
[f’(x)一f(x)]=e
x
[f”(x)一f(x)]. 对F(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,即存在η∈(ξ
1
,ξ
2
),使得F’(η)=0,故有 f"(η)=f(η),且η≠ξ
i
(i=1,2).
解析
转载请注明原文地址:https://kaotiyun.com/show/LfV4777K
0
考研数学二
相关试题推荐
证明:sinnχcosnχdχ=2-nsinnχdχ.
设f(χ)在[-1,1]上可导,f(χ)在χ=0处二阶可导,且f′(0)=0,f〞(0)=4.求
微分方程y′-χe-y+=0的通解为_______.
设A,B为n阶矩阵,(1)求P.Q;(2)证明:当P可逆时,Q也可逆.
设n阶矩阵A满足A2+2A-3E=O.求:(1)(A+2E)-1;(2)(A+4E)-1.
设z=f[χg(y),z-y],其中f二阶连续可偏导,g二阶可导,求.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数k=,求y=y(x).
设f(χ)=,求f(χ)的间断点并判断其类型.
求功:(Ⅰ)设半径为1的球正好有一半沉入水中,球的比重为1,现将球从水中取出,问要做多少功?(Ⅱ)半径为尺的半球形水池,其中充满了水,要把池内的水全部取尽需做多少功?
某闸门的形状与大小如图1—3—7所示,其中直线l为对称轴,闸门的上部为矩形ABCD,下部由二次抛物线与线段AB所围成.当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5:4,闸门矩形部分的高应为多少米?
随机试题
A.theyareuselessB.inpaperchaseC.thatitiseasilyreachedD.thatdifferentpeoplehavedifferentrequirementsE.they
肘关节脱位以后最常见的并发症是
患者女性,30岁,因患严重菌痢用药治疗后引起白细胞明显减少。该药物的主要治疗作用机制是
该租赁合同的性质如何?对于乙对房屋的装修费用,若甲乙达不成协商一致,应如何处理?
某商业企业为增值税小规模纳税人,2009年购进一批货物取得普通发票,共支付价款200000元;经主管税务机关核准,购进税控收款机一台,取得普通发票,支付价款8000元,本月销售货物取得含税价款280000元;提供商品推广服务,取得收入30000元。本期应纳
()综合反映了商业银行经营管理的水平。
2016年3月1日,A公司与B公司签订了一份写字楼建造合同,合同总价款为60000万元,建造期限2年,B公司于开工时预付20%的合同价款。该建造合同的结果能够可靠估计,A公司采用累计实际发生合同成本占合同预计总成本的比例确定完工进度。资料一:A公司
不属于元认知策略的一种是()。
根据下列材料回答问题。2001~2010年各级别轿车历年销售份额的变化趋势正确的是()。
地道翻译
最新回复
(
0
)