首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3为3个n的维向量,AX=0是n元齐次方程组。则( )正确。
设η1,η2,η3为3个n的维向量,AX=0是n元齐次方程组。则( )正确。
admin
2019-08-11
55
问题
设η
1
,η
2
,η
3
为3个n的维向量,AX=0是n元齐次方程组。则( )正确。
选项
A、如果η
1
,η
2
,η
3
都是AX=0的解,并且线性无关,则η
1
,η
2
,η
3
为AX=0的一个基础解系
B、如果η
1
,η
2
,η
3
都是AX=0的解,并且r(A)=n-3,则η
1
,η
2
,η
3
为AX=0的一个基础解系
C、如果η
1
,η
2
,η
3
等价于AX=0的一个基础解系,则它也是AX=0的基础解系
D、如果r(A)=n-3,并且AX=0每个解都可以用η
1
,η
2
,η
3
线性表示,则η
1
,η
2
,η
3
为AX=0的一个基础解系
答案
D
解析
答案A缺少n-r(A)=3的条件。
答案B缺少η
1
,η
2
,η
3
线性无关的条件。
答案C例如η
1
,η
2
是基础解系η
1
+η
2
=η
3
,则η
1
,η
2
,η
3
和η
1
,η
2
等价,但是η
1
,η
2
,η
3
不是基础解系。
要说明答案D的正确性,就要证明η
1
,η
2
,η
3
都是AX=0的解,并且线性无关,方法如下:设α
1
,α
2
,α
3
是AX=0的一个基础解系,则由条件,α
1
,α
2
,α
3
可以用η
1
,η
2
,η
3
线性表示,于是3≥r(η
1
,η
2
,η
3
)=r(η
1
,η
2
,η
3
,α
1
,α
2
,α
3
)≥r(α
1
,α
2
,α
3
)=3,则r(η
1
,η
2
,η
3
)=r(η
1
,η
2
,η
3
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)=3,
于是η
1
,η
2
,η
3
线性无关,并且和α
1
,α
2
,α
3
等价,从而都是AX=0的解。
转载请注明原文地址:https://kaotiyun.com/show/LgJ4777K
0
考研数学三
相关试题推荐
求下列差分方程的通解:yt+1—αyt=eβt,其中α,β为常数,且α≠0;
求下列微分方程的通解:xdy—ydx=y2eydy;
已知方程y"+p(x)y’+q(x)y=0,求证:若p(x)+xq(x)=0,则y=x是方程的一个特解;
设二维连续型随机变量(X,Y)在区域D={(x,y)|x2+y2≤1}上服从均匀分布.(Ⅰ)问X与Y是否相互独立;(Ⅱ)求X与Y的相关系数.
写了n封信,但信封上的地址是以随机的次序写的,设Y表示地址恰好写对的信的数目,求EY及DY.
曲线y=arctan渐近线的条数是
求下列极限:(a,b,c为正的常数);
(1987年)设y=sinx,,问t为何值时,图2.4中阴影部分的面积S1与S2之和S最小?最大?
(2001年)已知抛物线y=px2+qx(其中p<0,q>0)在第一象限内与直线x+y=5相切,且抛物线与x轴所围成的平面图形的面积为S.(1)问p和q为何值时,S达到最大值?(2)求出此最大值.
设函数f(x)在[0,1]上连续.在开区间(0,1)内大于零,并且满足(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a为何值时.图形S绕x轴旋转一周所得旋转体的体积最小.
随机试题
下列关于行政指导的说法中正确的有()。
作为《2010通则》中新增加的术语DAP指的是()
新时期爱国统一战线是建立在()
使用化痰药治疗癫痫惊厥者,最常配伍的是
A、茜草B、仙鹤草C、艾叶D、三七E、槐花某女,25岁。既患血热血瘀痛经,又患痹证关节疼痛。宜选用的药是
《建筑安装工程质量检验评定标准》只适用于工业于民用建筑工程和建筑设备安装工程。
会计电算化档案的管理应该做到()。
ST是英文SpecialTreatment的缩写,意即“特别处理”。该政策自1998年4月22日起实行,针对的对象是出现财务状况或其他状况异常的上市公司。所谓“财务状况异常”情况包括( )。
用线条勾勒出法国画家米勒作品《拾穗者》的大体形象。
RupertBrookeRupertBrooke,oneoftheleadingpoetsofhisgeneration,wasrenownedasaromantic,unlikemanyofhiscont
最新回复
(
0
)