首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,且r(A)==r<n,其中. (Ⅰ)证明方程组AX=b有且仅有n—r+1个线性无关解; (Ⅱ)若有三个线性无关解,求a,b及方程组的通解.
设A为m×n矩阵,且r(A)==r<n,其中. (Ⅰ)证明方程组AX=b有且仅有n—r+1个线性无关解; (Ⅱ)若有三个线性无关解,求a,b及方程组的通解.
admin
2014-11-26
67
问题
设A为m×n矩阵,且r(A)=
=r<n,其中
.
(Ⅰ)证明方程组AX=b有且仅有n—r+1个线性无关解;
(Ⅱ)若
有三个线性无关解,求a,b及方程组的通解.
选项
答案
(Ⅰ)令ξ
1
,ξ
2
,…,ξ
n-r
为Ax=0的基础解系,η
0
为AX=b的特解,显然β
0
=η
0
,β
1
=ξ
1
+η
0
,…,β
n-r
=ξ
n-r
+η
0
为AX=b的一组解,令k
0
β
0
+k
1
β
1
+…+k
n-r
β
n-r
=0,即 k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+(k
0
+k
1
+…+k
n-r
)η
0
=0?上式左乘A得(k
0
+k
1
+…+k
n-r
)b=0,因为b≠0时,k
0
+k
1
+…+k
n-r
=0,于是k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
为AX=0的基础解系,所以k
1
=k
2
=…=k
n-r
=0,于是k
0
=0,故β
0
,β
1
,…,β
n-r
线性无关.若γ
0
,γ
1
,…,γ
n-r+1
为AX=b的线性无关解,则ξ
1
=γ
1
一γ
0
,…,ξ
n-r+1
=γ
n-r+1
一γ
0
为AX=0的解,令k
1
ξ
1
+k
2
ξ
2
+…+k
n-r+1
ξ
n-r+1
=0,则k
1
γ
1
+k
2
γ
2
+…+k
n-r+1
γ
n-r+1
一(k
1
+k
2
+…+k
n-r+1
)γ
0
=0.因为γ
0
,γ
1
,…,γ
n-r+1
线性无关,所以k
1
=k
2
…=k
n-r+1
=0,即ξ
1
,ξ
2
,…,ξ
n-r+1
为AX=0的线性无关解,矛盾,故方程组AX=b恰有n一r+1个线性无关解. (Ⅱ)令[*]化为 AX=β.因为AX=β有三个非零解,所以AX=0有两个非零解,故4一r(A)≥2,r(A)≤2,又因为r(A)≥2,所以r(A)=[*]=2. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Ll54777K
0
考研数学一
相关试题推荐
已知4阶方阵A=、[a1,a2,a3,a4],a1,a2,a3,a4均为4维列向量,其中a1,a2线性无关,若β=a1+2a2-a3=a1+a2+a3+a4=a1+3a2+a3+2a4,则Ax=β的通解为________.
设A为n阶正定矩阵,证明:A-1仍为正定矩阵;
设齐次线性方程组有基础解系β1=[b11,b12,b13,b14]T,β2=[b21,b22,b23,b24]T,记α1=[a11,a12,a13,a14]T,α2=[a21,a22,a23,a24]T.证明:向量组α1,α2,β1,β2线性无关.
设A,B是n阶方阵,证明:AB,BA有相同的特征值.
已知方程组与方程组问参数a,b,c满足什么条件时,方程组(*)和(**)是同解方程组?
设函数f(x,y)连续,则∫12dy∫1yf(x,y)dx+∫12dy∫y4—yf(x,y)dx=().
设y=f(x,t),而t是由方程F(x,y,t)=0所确定的x,y的函数,其中f,F均具有一阶连续偏导数,则=().
已知y1=xex+e—x是某二阶非齐次线性微分方程的特解,y2=(x+1)ex是相应二阶齐次线性微分方程的特解,求此非齐次线性微分方程.
(1)设x>0,y>0,z>0,求函数f(x,y,z)=xyz3在约束条件x2+y2+z2=5R2(R>0为常数)下的最大值;(2)由(1)的结论证明:当a>0,b>0,c>0时,
平面曲线绕x轴旋转所得曲面为S,求曲面S的内接长方体的最大体积.
随机试题
在药物的杂质检查中,其限量一般不超过百万分之十的是:
郁证初起的常见证候是:
下列哪些属于靶向制剂
男,30岁,上腹痛7d,餐后突然加剧6h,并很快波及全腹,既往有胃病史。当时查体:全腹压痛、反跳痛、肌紧张,肝浊音界消失,肠鸣音减弱。入院后最可能的诊断是
严重吸气性呼吸困难最主要的特点是()
我国会计行业自律组织主要有()。
下列表述中不正确的是()。
甲公司为从事国家重点扶持的公共基础设施建设项目的公司,根据税法规定,2×20年度免交企业所得税。甲公司2×20年度发生的有关交易或事项如下:(1)以盈余公积转增资本500万元;(2)向股东分配股票股利800万元;(3)接受控股股东的现金捐赠350万元;(4
《簪花仕女图》的作者是()。
结构化设计中应用软件设计是其重要组成部分,它包含许多项内容,下述()是计算机进行信息处理时最基础性的工作。
最新回复
(
0
)