首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,且r(A)==r<n,其中. (Ⅰ)证明方程组AX=b有且仅有n—r+1个线性无关解; (Ⅱ)若有三个线性无关解,求a,b及方程组的通解.
设A为m×n矩阵,且r(A)==r<n,其中. (Ⅰ)证明方程组AX=b有且仅有n—r+1个线性无关解; (Ⅱ)若有三个线性无关解,求a,b及方程组的通解.
admin
2014-11-26
43
问题
设A为m×n矩阵,且r(A)=
=r<n,其中
.
(Ⅰ)证明方程组AX=b有且仅有n—r+1个线性无关解;
(Ⅱ)若
有三个线性无关解,求a,b及方程组的通解.
选项
答案
(Ⅰ)令ξ
1
,ξ
2
,…,ξ
n-r
为Ax=0的基础解系,η
0
为AX=b的特解,显然β
0
=η
0
,β
1
=ξ
1
+η
0
,…,β
n-r
=ξ
n-r
+η
0
为AX=b的一组解,令k
0
β
0
+k
1
β
1
+…+k
n-r
β
n-r
=0,即 k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+(k
0
+k
1
+…+k
n-r
)η
0
=0?上式左乘A得(k
0
+k
1
+…+k
n-r
)b=0,因为b≠0时,k
0
+k
1
+…+k
n-r
=0,于是k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
为AX=0的基础解系,所以k
1
=k
2
=…=k
n-r
=0,于是k
0
=0,故β
0
,β
1
,…,β
n-r
线性无关.若γ
0
,γ
1
,…,γ
n-r+1
为AX=b的线性无关解,则ξ
1
=γ
1
一γ
0
,…,ξ
n-r+1
=γ
n-r+1
一γ
0
为AX=0的解,令k
1
ξ
1
+k
2
ξ
2
+…+k
n-r+1
ξ
n-r+1
=0,则k
1
γ
1
+k
2
γ
2
+…+k
n-r+1
γ
n-r+1
一(k
1
+k
2
+…+k
n-r+1
)γ
0
=0.因为γ
0
,γ
1
,…,γ
n-r+1
线性无关,所以k
1
=k
2
…=k
n-r+1
=0,即ξ
1
,ξ
2
,…,ξ
n-r+1
为AX=0的线性无关解,矛盾,故方程组AX=b恰有n一r+1个线性无关解. (Ⅱ)令[*]化为 AX=β.因为AX=β有三个非零解,所以AX=0有两个非零解,故4一r(A)≥2,r(A)≤2,又因为r(A)≥2,所以r(A)=[*]=2. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Ll54777K
0
考研数学一
相关试题推荐
设α1,α2,…,αs,β为n维向量,则下列结论正确的是().
设,则在实数域上与A合同的矩阵为().
已知向量组线性无关,证明:对任意实数a,b,c向量组也线性无关.
设f(t)为连续函数,则累次积分化为极坐标形式的累次积分为().
设函数f(u,v)可微,若z=f[x,f(x,x)],求
求一个以y1=tet,y2=sin2t为两个特解的四阶常系数齐次线性微分方程,并求其通解.
设函数f(x)≥0在[1,+∞)上连续,若曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形的面积为S(t)=t2f(t)一1.
设f(x)=∫0tanxarctant2dt,g(x)=xsinx,当x→0时,比较这两个无穷小的关系.
Y服从参数X的指数分布,而X是服从[1,2]上的均匀分布的随机变量.求(X,Y)的密度函数;
当x→0时,(-1)ln(1+x2)是比xkarctanx高阶的无穷小,而xkarctanx是比(1-cos)高阶的无穷小,则k的取值范围是()
随机试题
三相整流电路最基本的是三相半波整流电路,其他类型都是由三相半波整流电路以不同方式组合而成的。()
选出一种预后可能比较严重的脊椎骨折:
男性,64岁,因腰痛就诊于骨科,按腰间盘突出治疗后无好转,行ECT骨扫描提示全身多处骨转移病灶,进一步查PSA大于100ng/ml,前列腺穿刺病理提示:前列腺小细胞癌,治疗方案采用
违反《中华人民共和国动物防疫法》规定,构成犯罪的,应依法()责任
2008年5月1日,某甲在公园游玩时,把佩戴的一圈项链丢失。该项链被公园的管理人员拾得后交给了有关的行政管理部门。因某甲未能在行政管理部门规定的保管期限内前去认领,该行政管理部门即依照有关规定将项链交给代售店拍卖。该项链后来被某乙以拍卖价买下。2009年秋
不允许出现裂缝的预应力混凝土构件进行结构性能检验时,其中()无需进行检验。
注册商标的有效期为15年,自核准注册之日起计算。( )
我国宪法规定现阶段的主要经济形式是:(1)国有经济即全民所有制经济;(2)劳动群众集体所有制经济;(3)劳动者个体经济;(4)私营经济;(5)外资经济。()
某文具厂引进了一套新设备,现在需要对其生产的文具进行质量检测,随机挑选了不同的10支签字笔,进行检测,结果发现7支笔芯和8支笔杆是合格的,只有一支笔芯和笔杆都不合格,那么抽检的10支签字笔中,笔芯和笔杆都合格的笔有多少支?
A、Lifeinsurance.B、Healthinsurance.C、Unemploymentinsurance.D、Autoinsurance.D根据句(8)可知,婚姻有助于节省保险金,包括汽车保险和房产保险,故答案为[D]。
最新回复
(
0
)