首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则( )
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则( )
admin
2016-04-11
43
问题
设X
1
和X
2
是任意两个相互独立的连续型随机变量,它们的概率密度分别为f
1
(x)和f
2
(x),分布函数分别为F
1
(x)和F
2
(x),则( )
选项
A、f
1
(x)+f
2
(x)必为某一随机变量的概率密度
B、f
1
(x).f
2
(x)必为某一随机变量的概率密度
C、F
1
(x)+F
2
(x)必为某一随机变量的分布函数
D、F
1
(x).F
2
(x)必为某一随机变量的分布函数
答案
D
解析
由已知,∫
-∞
+∞
f
1
(x)dx=∫
-∞
+∞
f
2
(x)dx=1,故
∫
-∞
+∞
[f
1
(x)+f
2
(x)]dx=∫
-∞
+∞
f
1
(x)dx+∫
-∞
+∞
f
2
(x)dx=2≠1,
所以不选(A),若设f
1
(x)=f
2
(x)=
则
即∫
-∞
+∞
f
1
(x)f
2
(x)dx有可能非1,故不选(B).
又由分布函数的性质和F
1
(+∞)=F
2
(+∞)=1,故
[F
1
(x)+F
2
(x)]=2,故不选(C)。
若令g(x)=F
2
(x).F
2
(x),由F
1
(-∞)=F
2
(-∞)=0、F
1
(+∞)=F
2
(+∞)=1,可得g(-∞)=0,g(+∞)=1;又由F
1
(x)和F
2
(x)均非降,可得g(x)非降(设x
1
<x
2
,由0≤F
1
(x
1
)≤F
1
(x
2
),0≤F
2
(x
1
)≤F
2
(x
2
),可得g(x
2
)≤g(x
2
));再由F
1
(x)和F
2
(x)右连续(本题由于X
1
和X
2
为连续型随机变量,所以F
1
(x)和F
2
(x)是连续的),可见g(x)也是右连续的(本题中g(x)是连续的),故证得g(x)=F
1
(x).F
2
(x)是分布函数,故选(D)。
转载请注明原文地址:https://kaotiyun.com/show/Lyw4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]可导,0<f’(x)<1,0<f(x)<1,且F(x)=1/2[x+f(x)]。设x0∈(0,1),xn+1=F(xn)(n=0,1,2,…),证明:
设正交矩阵,其中A是3阶矩阵,λ≠0,且A2=3A。求λ的值及矩阵A;
设α1,α2,…,αn是方程组Ax=0的基础解系,k1,k2,…,kn为任意常数,则方程组Ax=0的通解为()
设线性方程组的系数矩阵为A,三阶矩阵B≠0,且AB=0,试求λ值.
设面密度为1的立体Ω由不等式≤z≤1表示,求Ω对直线L:x=y=z的转动惯量.
已知电源电压X服从正态分布N(220,252),在电源电压处于X≤200V,200V<X<240V,X>240V三种情况下,某电子元件损坏的概率分别0.1,0.01,0.2.(1)试求该电子元件损坏的概率α;(2)该电子元件损坏时,电源电压在200
商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂产品每箱装100个,废品率为0.06,乙厂产品每箱120个,废品率为0.05.任取一箱,从中任取一个产品,求其为废品的概率
设A、B为两随机事件,且BA,则下列结论中肯定正确的是().
从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设X为途中遇到红灯的次数,数学期望EX=__________.
随机试题
直复营销
生产准备贯穿( )。
我国工程咨询的业务范围包括()。
软化系数小于()的岩石,是软化性较强的岩石,工程性质比较差。
合同管理的功能不包括( )。
下列选项中,不属于税收管辖权分类的是()。
甲公司2015年3月2日从其拥有80%股份的乙公司购进一项无形资产,该无形资产的成本为90万元,已摊销20万元,售价100万元。甲公司购入后作为管理用无形资产核算并于当月投入使用,预计尚可使用5年,净残值为零,采用直线法进行摊销。甲公司的所得税税率为25%
记账凭证上记账栏中的“√”记号表示的是()。
央行货币政策工具不包括()。(清华大学2017真题)
下面有关公民的监督权说法错误的是()
最新回复
(
0
)