首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则( )
设X1和X2是任意两个相互独立的连续型随机变量,它们的概率密度分别为f1(x)和f2(x),分布函数分别为F1(x)和F2(x),则( )
admin
2016-04-11
30
问题
设X
1
和X
2
是任意两个相互独立的连续型随机变量,它们的概率密度分别为f
1
(x)和f
2
(x),分布函数分别为F
1
(x)和F
2
(x),则( )
选项
A、f
1
(x)+f
2
(x)必为某一随机变量的概率密度
B、f
1
(x).f
2
(x)必为某一随机变量的概率密度
C、F
1
(x)+F
2
(x)必为某一随机变量的分布函数
D、F
1
(x).F
2
(x)必为某一随机变量的分布函数
答案
D
解析
由已知,∫
-∞
+∞
f
1
(x)dx=∫
-∞
+∞
f
2
(x)dx=1,故
∫
-∞
+∞
[f
1
(x)+f
2
(x)]dx=∫
-∞
+∞
f
1
(x)dx+∫
-∞
+∞
f
2
(x)dx=2≠1,
所以不选(A),若设f
1
(x)=f
2
(x)=
则
即∫
-∞
+∞
f
1
(x)f
2
(x)dx有可能非1,故不选(B).
又由分布函数的性质和F
1
(+∞)=F
2
(+∞)=1,故
[F
1
(x)+F
2
(x)]=2,故不选(C)。
若令g(x)=F
2
(x).F
2
(x),由F
1
(-∞)=F
2
(-∞)=0、F
1
(+∞)=F
2
(+∞)=1,可得g(-∞)=0,g(+∞)=1;又由F
1
(x)和F
2
(x)均非降,可得g(x)非降(设x
1
<x
2
,由0≤F
1
(x
1
)≤F
1
(x
2
),0≤F
2
(x
1
)≤F
2
(x
2
),可得g(x
2
)≤g(x
2
));再由F
1
(x)和F
2
(x)右连续(本题由于X
1
和X
2
为连续型随机变量,所以F
1
(x)和F
2
(x)是连续的),可见g(x)也是右连续的(本题中g(x)是连续的),故证得g(x)=F
1
(x).F
2
(x)是分布函数,故选(D)。
转载请注明原文地址:https://kaotiyun.com/show/Lyw4777K
0
考研数学一
相关试题推荐
设是正交矩阵,b>0,c>0求正交变换x=Qy化二次型f(x1,x2,x3)=xTAx为规范形
设在(-∞,+∞)内连续曲线y=f(x)关于点(a,0)(a≠0)对称,则积分∫a+1a-1f(x)dx=________。
设f(x,y)为连续函数,且f(x,y)=e—x2—y2+xy2f(u,υ)dudυ,其中D:u2+υ2≤a2(a>0),则f(x,y)=________.
设f(x)在[2,+∞)上可导,f(x)>0,f(2)=1,且满足[xf(x)]’≤-kf(x)(k为大于零的常数),则()
已知三阶方阵A,B满足关系式E+B=AB,的三个特征值分别为3,-3,0,则|B-1+2E|=_______.
以y1=eχcos2χ,y2=eχsin2χ与y3=e-χ为线性无关特解的三阶常系数齐次线性微分方程是
[*]本题是两个不同分布的综合问题,所求的事件Vn为n次独立重复实验中X的观测值不大于0.1的次数,故Vn服从二项分布b(n,p),而这里p为X的观测值不大于0.1的概率,需要根据X服从的分布来计算.
离散型随机变量X的概率分布为(1)P{X=i}=a2i,i=1,2,…,100;(2)P{X=i}=2ai,i=1,2,…,分别求(1)、(2)中a的值.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中恰有一件是废品”;
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
随机试题
在SOL查询中使用WHERE子句指出的是________________。
《政府采购货物和服务招标投标管理办法》规定,对于政府采购的货物和服务招标项目,组成联合体的成员应是()个以上的供应商。
反向市场是构建()的套利行为。Ⅰ.现货多头Ⅱ.期货多头Ⅲ.现货空头Ⅳ.期货空头
市区某企业应纳增值税18万元,营业税20万元,因两税拖欠被加收的滞纳金分别为360元、400元,城建税的处理是( )。
行政领导者作为决策的主要制定者,在决策活动中应掌握哪些要求?()
厂家生产的一种产品同时在两个市场销售,售价分别为p1和p2,销售量分别为q1和q2,需求函数分别为q1=24—0.2p1和q2=10一0.05p2,总成本函数为C=35+40(q1+q2).试问:厂家如何确定两个市场的售价,能使其获得的总利润最大?最大总利
Readthefollowingarticleandanswerquestions9-18onthenextpage.HappinessSecretsforToughTimes1.
Withunemploymentrisingandhousingcostsstillhigh,citiesaroundthecountryareexperiencinganewandsuddenwaveofhomel
Thevolleyballplayers,______(在教练员的带领下),cameforwardtoreceivethecup.
A、Displayingyourexcitementaboutthejob.B、Expressingyourthankfulnesstothemanager.C、Showingyourqualificationforthe
最新回复
(
0
)