首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
admin
2017-08-31
61
问题
设A为n阶矩阵,A
11
≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A
*
b=0.
选项
答案
设非齐次线性方程组AX=b有无穷多个解,则r(A)<n,从而|A|=0, 于是A
*
b=A
*
AX=|A|X=0. 反之,设A
*
b=0,因为b≠0,所以方程组A
*
X=0有非零解,从而r(A
*
)<n,又A
11
≠0,所以r(A
*
)=1,且r(A)=n—1. 因为r(A
*
)=1,所以方程组A
*
X=0的基础解系含有n一1个线性无关的解向量,而A
*
A=0,所以A的列向量组α
1
,α
2
,…,α
n
为方程组A
*
X=0的一组解向量. 由A
11
≠0,得α
2
,…,α
n
线性无关,所以α
2
,…,α
n
是方程组A
*
X=0的基础解系. 因为A
*
b=0,所以b可由α
2
,…,α
n
线性表示,也可由α
1
,α
2
,…,α
n
线性表示,故r(A)=[*]=n一1<n,即方程组AX=b有无穷多个解.
解析
转载请注明原文地址:https://kaotiyun.com/show/MGr4777K
0
考研数学一
相关试题推荐
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵.(I)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩
设且B=P-1AP.当时,求矩阵B;
设且B=P-1AP.求矩阵A的特征值与特征向量;
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3ξ2+ξ3是否是A的特征向量?说明理由;
已知矩阵只有一个线性无关的特征向量,那么矩阵A的特征向量是____________.
若矩阵相似于对角矩阵A,试确定常数a的值,并求可逆矩阵P使P﹣1AP=A.
已知A是3阶矩阵,A*是A的伴随矩阵,如果矩阵A的特征值是1,2,3,那么矩阵(A*)*的最大特征值是__________.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠O,使得AB=O,则().
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明丨A丨≠0.
随机试题
简述汽车噪声的主要来源。
A.手太阳经B.足太阳经C.手少阳经D.足少阳经E.手阳明经
34周女婴,出生后母乳喂养,但哺乳时即出现唇周青紫,应给予正确措施是
均数与标准差的关系是()
吸烟有害健康,尤其是“被吸烟者”的健康,因此越来越多的国家和地区明令禁止在公共场所吸烟。高热量、高脂肪的食物也有害于人体健康,因此,也应该在公共场所禁止兜售高热量、高脂肪的食物。以下哪项为真,则最能削弱上述论证?
商业银行中间业务形成商业银行非利息收入。()
《格尔尼卡》是毕加索接受西班牙的委托,为1937年巴黎国际博览会西班牙馆作的装饰画。()
Accordingtothepsychologists,acompulsivespenderisonewhospendslargeamountsofmoney______.Whatisthetextmainlya
WhichofthefollowingisNOTthepurposeofAmerica’scentralbank?
A、Theylivedinlargegroups.B、Theyusedsandasinsulation.C、Theykeptfiresburningconstantly.D、Theyfacedtheirhomestow
最新回复
(
0
)