首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
admin
2017-08-31
50
问题
设A为n阶矩阵,A
11
≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A
*
b=0.
选项
答案
设非齐次线性方程组AX=b有无穷多个解,则r(A)<n,从而|A|=0, 于是A
*
b=A
*
AX=|A|X=0. 反之,设A
*
b=0,因为b≠0,所以方程组A
*
X=0有非零解,从而r(A
*
)<n,又A
11
≠0,所以r(A
*
)=1,且r(A)=n—1. 因为r(A
*
)=1,所以方程组A
*
X=0的基础解系含有n一1个线性无关的解向量,而A
*
A=0,所以A的列向量组α
1
,α
2
,…,α
n
为方程组A
*
X=0的一组解向量. 由A
11
≠0,得α
2
,…,α
n
线性无关,所以α
2
,…,α
n
是方程组A
*
X=0的基础解系. 因为A
*
b=0,所以b可由α
2
,…,α
n
线性表示,也可由α
1
,α
2
,…,α
n
线性表示,故r(A)=[*]=n一1<n,即方程组AX=b有无穷多个解.
解析
转载请注明原文地址:https://kaotiyun.com/show/MGr4777K
0
考研数学一
相关试题推荐
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3ξ2+ξ3是否是A的特征向量?说明理由;
若矩阵相似于对角矩阵A,试确定常数a的值,并求可逆矩阵P使P﹣1AP=A.
假设f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零,记F(x)=,证明:F(x)在(a,+∞)内单调增加.
设四阶矩阵B=,且矩阵A满足关系式A(E-C-1B)TCT=E,其中E为四阶单位矩阵,C-1表示C的逆矩阵,CT表示C的转置矩阵,将上述关系式化简并求矩阵A.
已知A是3阶矩阵,A*是A的伴随矩阵,如果矩阵A的特征值是1,2,3,那么矩阵(A*)*的最大特征值是__________.
已知三阶矩阵B为非零向量,且B的每一个列向量都是方程组的解,(I)求λ的值;(Ⅱ)证明|B|=0.
设且A~B;求可逆矩阵P,使得P-1AP=B.
设且A~B.求可逆矩阵P,使得P-1AP=B.
设且A~B.求a;
随机试题
Didyouexamineyourpapermoneyclosely?Seeifyoucanlocatea$5,$10,or$20billprintedbefore1964andmarked"Federal
女,8个月,因频繁呕吐、腹泻3天入院。大便稀水样,无腥臭味,10余次/日,量中等,查体:呼吸46次/分;脉搏140次/分,精神萎靡,皮肤弹性差,四肢温,前囟眼窝凹陷,心音低钝,腹胀,肠鸣音减弱,四肢无力,腱反射弱。化验:大便镜检WBC0~1/HP,血钠1
胶片感光乳剂层受光照射后发生的光化学反应是
口腔癌“无瘤”手术的要求不包括
实行会员分级结算制度的期货交易所,应当向结算会员收取结算担保金。()
迄今为止发展最快、渗透性最强、应用关键技术最广泛的行业是( )。
下列不是普契尼创作的歌剧的是()
Youshouldspendabout20minutesonthistask.Thetablebelowshowssocialandeconomicindicatorsforfourcountriesin1
Exercisehaslongbeentreatedasthecure-allforeverythingthatailsyou.Supporterssayyouwillloseweightandbringyour
Learningisanessentialprocessforlivingthingstoacquirenecessaryskillsandbehaviors.Scientistshavealreadyfoundthat
最新回复
(
0
)