首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 证明存在ξ∈(0,3),使f’’(ξ)=0.
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 证明存在ξ∈(0,3),使f’’(ξ)=0.
admin
2016-04-08
83
问题
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且
证明存在ξ∈(0,3),使f’’(ξ)=0.
选项
答案
因为f(2)+f(3)=2f(0),即[*]又因为f(x)在[2,3]上连续,由介值定理知,至少存在一点η
1
∈[2,3]使得f(η
1
)=f(0).又因为函数在[0,η]上连续,在(0,η)上可导,且f(0)=f(η),由罗尔中值定理知,存在ξ
1
∈(0,η),有f’(ξ
1
)=0.因为f(x)在[η,η
1
]上是连续的,在(η,η
1
)上是可导的,且满足f(η)=f(0)=f(η
1
),由罗尔中值定理知,存在ξ
2
∈(η,η
1
),有f’(ξ
2
)=0.因为f(x)在[ξ
1
,ξ
2
]上是二阶可导的,且f’(ξ
1
)=f’(ξ
2
)=0,根据罗尔中值定理,至少存在—点ξ∈(ξ
1
,ξ
2
),使得f’’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Sd34777K
0
考研数学二
相关试题推荐
若f(x)在[a,b]上具有二阶导数,且f(a)<0,f(b)<0,∫abf(x)dx=0,证明:存在一点ξ∈(a,b),使f”(ξ)<0.
设函数f(x),g(x)在(-∞,+∞)上有定义,且满足f(x+y)=f(x)g(y)+f(y)g(x),f(0)=0,g(0)=1,f’(0)=1,g’(0)=0.证明:对一切x,f(x)均可导,且f’(x)=g(x).
设随机变量X的密度函数为且已知,则θ=
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是().
已知已知直线L1:,直线L2:,则L1与L2的夹角为().
设函数z=xf(x+y)+yg(x+y),其中f,g具有连续二阶导数,则=________.
一条曲线经过点(2,0),且在切点与y轴之间的切线长为2,求该曲线.
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y″+a1(x)y′+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
一曲线通过点(e2,3),且在任一点处的切线斜率等于该点横坐标的倒数,求该积分曲线.
求微分方程(x2-1)dy+(2xy-cosx)dx=0满足初始条件y|x=0=1的特解。
随机试题
律师论辩的思维方法。
原发性血小板减少陛紫癜患者,应用糖皮质激素治疗多长时间未见效,才考虑切脾()(1994年)
多毛细胞白血病特征性细胞化学染色为
A、过敏性紫癜肾炎B、IgA肾病C、急性链球菌感染后肾小球肾炎D、原发性小血管炎肾损害E、狼疮性肾炎患者,女性,13岁,3周前始出现双下肢对称性出血性皮疹,浮肿、尿少、肉眼血尿1周,伴腹痛、黑粪,肾活检病理为系膜增生性肾小
下列属于企业会计档案的有()。
甲图书肯像公司在某经营期间共销售1万册图书、2万套DVD音像制品,转让两项外观设计专利,出售一辆自己使用过的小轿车。根据《营业税暂行条例》,这些经营业务属于营业税征税范围的是()。
绩效指标分析的基本工具有()。
设X1,X2,…,Xn(n>2)是来自总体X~N(0,1)的简单随机样本,记Yi=Xi一(i=1,2,…,n).求:Cov(Y1,Yn).
设D=求-A13-A23+2A33+A43.
Withunemploymenttidethroughouttherichworld,moreandmoreyoungpeopleareseekinginternships.Manyfirms,nervousabout
最新回复
(
0
)