首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 证明存在ξ∈(0,3),使f’’(ξ)=0.
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且 证明存在ξ∈(0,3),使f’’(ξ)=0.
admin
2016-04-08
57
问题
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且
证明存在ξ∈(0,3),使f’’(ξ)=0.
选项
答案
因为f(2)+f(3)=2f(0),即[*]又因为f(x)在[2,3]上连续,由介值定理知,至少存在一点η
1
∈[2,3]使得f(η
1
)=f(0).又因为函数在[0,η]上连续,在(0,η)上可导,且f(0)=f(η),由罗尔中值定理知,存在ξ
1
∈(0,η),有f’(ξ
1
)=0.因为f(x)在[η,η
1
]上是连续的,在(η,η
1
)上是可导的,且满足f(η)=f(0)=f(η
1
),由罗尔中值定理知,存在ξ
2
∈(η,η
1
),有f’(ξ
2
)=0.因为f(x)在[ξ
1
,ξ
2
]上是二阶可导的,且f’(ξ
1
)=f’(ξ
2
)=0,根据罗尔中值定理,至少存在—点ξ∈(ξ
1
,ξ
2
),使得f’’(ξ)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Sd34777K
0
考研数学二
相关试题推荐
设f(x)在(-∞,+∞)内可导且f’(x)严格单调增加,试讨论在(-∞,+∞)内的单调性.
设函数f(x),g(x)在(-∞,+∞)上有定义,且满足f(x+y)=f(x)g(y)+f(y)g(x),f(0)=0,g(0)=1,f’(0)=1,g’(0)=0.证明:对一切x,f(x)均可导,且f’(x)=g(x).
曲线在t=0处的法线方程为________.
设,则f(x-1)的间断点为________.
设z=z(x,y)二阶连续可偏导且满足方程在变换下,原方程化为求a,b的值.
(Ⅰ)设n维向量α1,α2,α3,α4线性无关.βi=αi+tα4(i=1,2,3),证明:β1,β2,β3对任意t都线性无关;(Ⅱ)设n维向量α1,α2,α3,α4满足=0,βi=αi+iλiξ,i=1,2,3,4,问λi(i=1,2,3,4)
积分区域D={(x,y)|x2+y2≤4y},计算dxdy.
计算曲线积分I=∮Lydx+zdy+zdz,其中L是球面x2+y2+z2=R2与平面x+z=R的交线,方向由(R,0,0)出发,先经过x>0,y>0部分,再经过x>0,y<0部分回到出发点.
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
(2010年试题,6)=().
随机试题
下列哪种激素的分泌不受腺垂体的控制
深度为15m的人工挖孔桩工程,()。
不符合终止经营定义的持有待售的非流动资产或处置组,其减值损失和转回金额及处置损益应当作为持续经营损益列报。()
住宅专项维修资金是指专项用于住宅()保修期满后的维修和更新、改造的资金。
【2012年烟台市市直】群体发展的最高阶段是()。
标志着我国剥削制度被消灭的历史事件是
中共十八届四中全会通过的《中共中央关于全面推进依法治国若干重大问题的决定》提出,坚持依法治国首先要坚持依宪治国,坚持依法执政首先要坚持依宪执政。中国特色社会主义政治最本质的特征、社会主义法治的最根本保证是()
=________.
微机的主机指的是_______。
SoapOperasAsoapoperaisaserialontelevisionorradio/whereeachepisodelinkstothenextepisode./Soyou’rea
最新回复
(
0
)