首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(aij)3×3满足A*=AT,其中A*是A的伴随矩阵,AT是A的转置矩阵,若a11,a12,a13是3个相等的正数,则a11=______________________.
设矩阵A=(aij)3×3满足A*=AT,其中A*是A的伴随矩阵,AT是A的转置矩阵,若a11,a12,a13是3个相等的正数,则a11=______________________.
admin
2021-02-25
57
问题
设矩阵A=(a
ij
)
3×3
满足A
*
=A
T
,其中A
*
是A的伴随矩阵,A
T
是A的转置矩阵,若a
11
,a
12
,a
13
是3个相等的正数,则a
11
=______________________.
选项
答案
[*]
解析
本题考查行列式按行(列)展开定理、矩阵与其伴随矩阵的行列式的关系.要求考生应用行列式的性质,展开定理、矩阵与其伴随矩阵的行列式的关系计算行列式.
由|A
T
|=|A
*
|和|A
*
|=|A|
3-1
=|A|
2
,得|A|
2
=|A|,即
|A|(|A|-1)=0,从而|A|=0或|A|=1.
将|A|按第一行展开,再由A
*
=A
T
知a
ij
=A
ij
得
|A|=a
11
A
11
+a
12
A
12
+a
13
A
13
=a
2
11
+a
2
12
+a
2
13
=3a
2
11
>0,
于是得|A|=1,即3a
2
11
=1,故a
11
=
.
转载请注明原文地址:https://kaotiyun.com/show/Me84777K
0
考研数学二
相关试题推荐
设四阶矩阵B满足BA-1=2AB+E,且A=,求矩阵B.
若函数f(x)在(0,+∞)上有定义,在x=1点处可导,且对于任意的正数a,b总有f(ab)=f(a)+f(b),证明:f(x)在(0,+∞)上处处可导,且f’(x)=.
设二次型经过正交变换X=QY化为标准形,求参数a,b及正交矩阵Q.
设A,b都是n阶矩阵,使得A+B可逆,证明B(A+B)-1A=A(A+B)-1B.
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设λ为可逆方阵A的特征值,且χ为对应的特征向量,证明:(1)λ≠0;(2)为A-1的特征值,且χ为对应的特征向量;(3)为A*的特征值,且χ为对应的特征向量.
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=-2,则行列式|-A1-2A2,2A2+3A3,-3A3+2A1|=_______.
若3阶非零方阵B的每一列都是方程组的解,则λ=________,|B|=________.
随机试题
当前全球化的表现有()
美国可口可乐公司对比较贫穷的国家和地区,对经销可口可乐的零售商赠送大型冷藏箱,属于对国际市场销售渠道的()
患者全身起皮疹3天,躯干潮红,四肢泛发丘疱疹,灼热,瘙痒剧烈,抓破渗水,伴心烦口渴,身热不扬,大便干,小便短赤,舌红,苔黄,脉滑数。其诊断为()
下列()项可不针对黄土地基湿陷性进行处理。
在一个纳税年度内,居民企业技术转让所得不超过法定限额的部分,免征企业所得税。该法定限额是()万元。
关于“节约”正确的看法是()。
下列表述中,不能体现环境对人身心发展的影响的是()。
2010年8月5日,甲市第十八中学教师黄某与妻子刘某携小儿子在市某公园游玩时,偶遇黄某小学时的同学张某(公安机关通缉的盗窃在逃犯),闲谈几句话,张某向黄某借了40元钱,后又匆匆离去。黄某离开公园时,在公园门口被A区公安分局的两名刑警截住,进行盘问并强行搜身
多元化投资与企业其他业务战略没有关系的业务单位是指()。
Whatisthenameofthegirlbeinginterviewed?
最新回复
(
0
)