首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有一小山,取它的底面所在的平面为xOy坐标面,其底部所占的区域为D={(x,y)|x2+y2一xy≤75},小山的高度函数为h(x,y)=75一x2一y2+xy。 (Ⅰ)设M(x,y)为区域D上的一个点,问h(x,y),在该点沿平面上什么方向的方
设有一小山,取它的底面所在的平面为xOy坐标面,其底部所占的区域为D={(x,y)|x2+y2一xy≤75},小山的高度函数为h(x,y)=75一x2一y2+xy。 (Ⅰ)设M(x,y)为区域D上的一个点,问h(x,y),在该点沿平面上什么方向的方
admin
2018-05-25
91
问题
设有一小山,取它的底面所在的平面为xOy坐标面,其底部所占的区域为D={(x,y)|x
2
+y
2
一xy≤75},小山的高度函数为h(x,y)=75一x
2
一y
2
+xy。
(Ⅰ)设M(x,y)为区域D上的一个点,问h(x,y),在该点沿平面上什么方向的方向导数最大。若记此方向导数的最大值为g(x
0
,y
0
),试写出g(x
0
,y
0
)的表达式;
(Ⅱ)现欲利用此小山开展攀岩活动,为此需要在山脚寻找一上山坡度最大的点作为攀登的起点,也就是说,要在D的边界曲线x
2
+y
2
一xy=75上找出使(Ⅰ)中的g(x,y)达到最大值的点,试确定攀登起点的位置。
选项
答案
(Ⅰ)函数h(x,y)在点M处沿该点的梯度方向 [*]={一2x
0
+y
0
,一2y
0
+x
0
}。 方向导数的最大值是gradh(x,y)[*]的模,即 g(x
0
,y
0
)=[*]。 (Ⅱ)求g(x,y)在条件x
2
+y
2
一xy一75=0下的最大值点与求g
2
(x,y)=(y一2x)
2
+(x一2y)
2
=5x
2
+5y
2
一8xy在条件x
2
+y
2
一xy一75=0下的最大值点等价。这是求解条件最值问题,用拉格朗日乘数法。构造拉格朗日函数 L(x,y,λ)=5x
2
+5y
2
一8xy+λ(x
2
+y
2
一xy一75), 则有 [*] 联立(1),(2)解得y=一x,λ=一6或y=x,λ=一2。 若y=一x,则由(3)式得3x
2
=75,即x=±5,y=[*]5。 若y=x,则由(3)式得x
2
=75,即x=±[*]。 于是得可能的条件极值点 M
1
(5,一5),M
2
(一5,5),M[*]。 现比较f(x,y)=g
2
(x,y)=5x
2
+5y
2
—8xy在这些点的函数值,有 f(M
1
)=f(M
2
)=450,f(M
3
)=f(M
4
)=150。 因为实际问题存在最大值,而最大值又只可能在M
1
,M
2
,M
3
,M
4
中取到。所以g
2
(x,y)在M
1
,M
2
取得边界线D上的最大值,即M
1
,M
2
可作为攀登的起点。
解析
转载请注明原文地址:https://kaotiyun.com/show/Mmg4777K
0
考研数学一
相关试题推荐
设实方阵A=(aij)4×4满足:(1)aij=Aij(i,j=1,2,3,4,其中Aij为aij的代数余子式);(2)a11≠0.求|A|.
设4元齐次线性方程组(I)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1).(1)求线性方程组(I)的基础解系;(2)问线性方程组(I)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没
设有三张不同平面的方程ai1x+ai2y+ai3z=bi,i=1,2,3,它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为()
设X~N(0,1),给定X=x条件下时Y~N(ρx,1-ρ2)(0<ρ<1),求(X,Y)的密度以及给定Y=y条件下X的分布.
设,求曲线y=f(x)与x轴所围图形的面积.
设f(x)有连续一阶导数,试求
设函数f(x)连续,则=___________
设二维随机变量(X,Y)的概率密度为求(X,Y)的联合分布函数F(x,y).
微分方程y"+2y’一3y=xex的通解为y=________.
在区间(-1,1)上任意投一质点,以X表示该质点的坐标.设该质点落在(-1,1)中任意小区间内的概率与这个小区间的长度成正比,则
随机试题
实际进度前锋线必须用()进行进度检查。
Henrywillnotbeabletoattendthemeetingtonightbecause______.
A.破瘀散结B.理气行滞C.先攻后补D.攻补兼施E.先补后攻久病体弱的癥瘕患者,其治法是
A.党参B.人参C.西洋参D.太子参E.刺五加能大补元气的药是
下列各项中,()应按其水平投影面积的一半计算建筑面积。
案例研讨法适用的培训对象是(),旨在提高培训对象的决策能力。
高中体育与健康课程学习评价的内容不包括()。
发现学习属于()。
(2017·山西)对于学习的实质,说法错误的是()
现阶段我国各族人民的共同理想是:
最新回复
(
0
)