首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求.
[2011年] 设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求.
admin
2019-04-05
50
问题
[2011年] 设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求
.
选项
答案
先求[*],再将x=1,g(1)=1,g′(1)=0代入得到[*],然后由[*] 对y求偏导,最后将y=1代入即得[*] 也可先求[*],再将[*]对y求偏导,即得[*],最后将x=1,y=1代入. 解一 令u=xy,v=yg(x),因在x=1处g(x)取得极值g(1)=1,故g′(1)=0. [*]=yf′
1
(xy,yg(x))+yg′(x)f′
2
(xy,yg(x)). ① 将x=1,g(1)=l,g′(1)=0代入上式,得到 [*]=yf′
1
(y,yg(1))+yg′(1)f′
2
(y,yg(1))=y′
1
(y,y). ② 再在式②两边对y求导数得到 [*][yf′
1
(y,y)]=f′
1
(y,y)+yf″
12
(y,y)+yf″
12
(y,y). 将y=1代入上式即得 [*]=f′
1
(1,1)+f″
11
(1,1)+f″
12
(1,1). 解二 在解一中式①两边对y求偏导得到 [*] =f′
1
+y[*]+g′(x)f′
2
+yg′(x)[*] =f′
1
+xyf″
11
+g(x)f″
12
+g′(x)f′
2
+yg′(x)[xf″
21
+g(x)f″
22
]. 因在x=1处g(x)取得极值g(1)=1,故g′(1)=0.代入上式得到 [*]=f′
1
(1,1)+f″
11
(1,1)+g(1)f″
12
(1,1)+g′(1)f′
2
(1,1)+yg′(1)[f″
21
(1,1)+g(1),f″
22
(1,1)] =f′
1
(1,1)+f″
12
(1,1)+f2(1,1)+0+0 =f′
1
(1,1)+f″
11
(1,1)+f″
12
(1,1).
解析
转载请注明原文地址:https://kaotiyun.com/show/RPV4777K
0
考研数学二
相关试题推荐
设热水瓶内热水温度为T,室内温度为T0,t为时间(以小时为单位).根据牛顿冷却定律知:热水温度下降的速率与T-T0成正比.又设T0=20℃,当t=0时,T=100℃,并知24小时后水瓶内温度为50℃,问几小时后瓶内温度为95℃.
设α1,α2……αn为n个线性无关的n维列向量,β1,β2,…,βn为任意n个n维列向量。证明:α1,α2……αn可由β1β2……βn线性表示的充要条件是β1β2……βn线性无关。
求极限,其中n为给定的自然数.
求微分方程y"+2y’-3y=e-3x的通解.
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x-t|一f(t)dt当F(x)的最小值为f(A)一a2一1时,求函数f(x)。
设f(χ)在(a,b)内可导,且χ0∈(a,b)使得又f(χ)>0(<0),f(χ)<0(>0),f(χ)<0(>0)(如图4.13),求证:f(χ)在(a,b)恰有两个零点.
设α1,α2……αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1β2……βs也为Ax=0的一个基础解系.
已知齐次线性方程组同解,求a,b,c的值。
对数螺线r=eθ在点(r,θ)=处的切线的直角坐标方程为________.
[2002年]设函数f(x)连续,则下列函数中必为偶函数的是().
随机试题
寰枢正中关节构成
[2010年,第19题]设齐次方程组当方程组有非零解时,k值为()。
在编制“资金来源与运用表”时,下列()属于资金来源项目。
根据《建设工程价款结算暂行办法》,在施工条件具备的前提下,下列有关工程预付款的叙述中,正确的是()。
水底隧道施工的方法有()。
下列关于优秀团队特征的叙述不正确的是( )。
关于工作满意度的说法,正确的是()。
柴某经工商部门核准从事个体经营,并办理了税务登记。之后,清湖县地税局将个体户柴某的纳税方式由过去的定额缴税变更为自行申报缴税。2013年2月,因柴某不按规定如实申报,清湖县地税局调查核实有关情况后,责令柴某限期申报缴纳相应税款、滞纳金,柴某要求延期申报和延
“大禹治水,三过家门而不入”体现了一种()
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是Aχ=0的基础解系,则A的列向量的极大线性无关组是()
最新回复
(
0
)