首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为
admin
2019-04-09
70
问题
设A为4×3矩阵,η
1
,η
2
,η
3
是非齐次线性方程组Ax=β的3个线性无关的解,k
1
,k
2
为任意常数,则Ax=β的通解为
选项
A、(η
2
+η
3
)/2+k
1
(η
2
-η
1
)
B、(η
2
-η
3
)/2+k
1
(η
2
-η
1
)
C、(η
2
+η
3
)/2+k
1
(η
2
-η
1
)+k
2
(η
3
-η
1
)
D、(η
2
-η
3
)/2+k
1
(η
2
-η
1
)+k
2
(η
3
-η
1
)
答案
C
解析
分析一 因为η
1
,η
2
,η
3
足Ax=β的3个线性无关的解,那么η
2
-η
1
,η
3
-η
1
是Ax=0的2个线性无关的解.从而n-r(A)≥2,即3-r(A)≥2 r(A)≤1.
显然r(A)≥l,凶此r(A)=1.
由n-r(A)=3-1=2,知(A)、(B)均不正确.
又A(η
2
+η
3
)/2=1/2η
2
+1/2Aη
3
=β,故1/2(η
2
+η
3
)是方程组Ax=β的解.所以应选(C),
注意:1/2(η
2
+η
3
)是齐次方程组Ax=0的解.
分析二 用排除法(η
2
+η
3
)/2三是齐次线性方程组Ax=0的解,所以可排除选项(B),(D);又η
2
-η
1
,η
3
-η
1
线性无关,所以Ax=0的基础解系至少包含2个解向量,从而可排除选项(A).因此应选(C).
转载请注明原文地址:https://kaotiyun.com/show/NdP4777K
0
考研数学三
相关试题推荐
设y=y(x,z)是由方程ex+y+z=x2+y2+z2确定的隐函数,则=______.
设α1,…,αm为m+1个n维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
设u=f(x+y,x2+y2),其中f二阶连续可偏导,求.
设f(x)可导,则当△x→0时,△y-dy是△x的().
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且f(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,b),使得f’(ξ)>0,f’(η)<0.
设总体X的概率密度为其中参数θ(0<θ<1)未知。X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值。求参数θ的矩估计量。
已知(x,y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布。(Ⅰ)求(X,Y)的联合密度函数f(x,y);(Ⅱ)求边缘密度函数fX(x),fY(y)及条件密度函数fX|Y(x|y),fY|X(y|x);并问X与Y是否独立;
设A,B为随机事件,且,令(Ⅰ)求二维随机变量(X,Y)的概率分布;(Ⅱ)求X和Y的相关系数ρXY。
设z=f(x,y)在点(1,1)处可微,f(1,1)=1,f′1(1,1)=a,f′2(1,1)=b,又u=f[x,f(x,x)],求
(1)求常数m,n的值,使得(2)设当x→0时,x一(a+bcosx)sinx为x的5阶无穷小,求a,b.(3)设当x→0时,求a,b.
随机试题
下列选项中,属于机动车维修技术负责人应满足的基本条件的是()。
有效面积是指()。
为防止变造票据的出票日期,在填写月、日时,月为()的,应在其前加“零”。
下列属于中国银行业协会的会员单位的有()。
信用条件“1/10,n/20”的含义为()。
领会超越了单纯的记忆,代表最低水平的【】
A.keentoB.soakupC.amajorfactorD.bringaboutPhrases:A.children【T13】___________A-characteristicsissc
研究者想探讨“文章的长度和主题熟悉性对儿童阅读理解的影响”,其中文章的长度是()
“权利决不能超出社会的经济结构以及由经济结构制约的社会的文化发展”。这一论述强调马克思主义权利观与其他权利观的根本区别是
Thesecretsofsleepwereamysteryforcenturiessimplybecausetherewasneitherthemeans(51)them,northeneed.Onlywhenca
最新回复
(
0
)