首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,b>a>0,f(a)≠f(b),试证:存在ξη∈(a,b),使得2ηf’(ξ)=(a+b)f’(η).
设f(x)在[a,b]上连续,在(a,b)内可导,b>a>0,f(a)≠f(b),试证:存在ξη∈(a,b),使得2ηf’(ξ)=(a+b)f’(η).
admin
2019-05-14
55
问题
设f(x)在[a,b]上连续,在(a,b)内可导,b>a>0,f(a)≠f(b),试证:存在ξη∈(a,b),使得2ηf’(ξ)=(a+b)f’(η).
选项
答案
由拉格朗日微分中值定理,可得[*] 取g(x)=x
2
,则f(x)、g(x)在[a,b]上满足柯西定理的条件. 由柯西微分中值定理,存在点η∈(a,b),使得[*] 故有2ηf’(ξ)=(a+b)f’(η).
解析
关于双介值问题,解题的基本思路是将其化为单介值问题.先将两个介值分离,再用两次拉格朗日微分中值定理或一次拉格朗日微分中值定理、一次柯西微分中值定理.在用一次拉格朗日微分中值定理、一次柯西微分中值定理证明的命题中,一般来说,一个函数是已知的,另一个函数通过对要证结论稍加整理便可看出.
转载请注明原文地址:https://kaotiyun.com/show/Nl04777K
0
考研数学一
相关试题推荐
求微分方程xy’+y=2(x>0)的通解。
求直线与平面2x+y一z一6=0的夹角。
设e<a<b,证明:a2<<b2。
设幂级数anxn在(一∞,+∞)内收敛,其和函数s(x)满足s"一2xs’一4s=0,s(0)=0,s’(0)=1。(Ⅰ)证明:an+2=an,n=1,2,…;(Ⅱ)求s(x)的表达式。
设随机变量X服从正态分布N(μ,8),μ未知.现有X的10个观察值χ1,…,χ10,已知=1500.(Ⅰ)求μ的置信度为0.95的置信区间;(Ⅱ)要想使0.95的置信区间长度不超过l,观察值个数n最少应取多少?(Ⅲ)如果n=1
设f(χ)是周期为3的连续函数,f(χ)在点χ=1处可导,且满足恒等式f(1+tanχ)-4f(1-3tanχ)=26χ+g(χ),其中g(χ)当χ→0时是比χ高阶的无穷小量.求曲线y=f(χ)在点(4,f(4))处的切线方程.
证明n元非齐次线性方程组Aχ=b有解的充分必要条件是ATχ=0的解全是bTχ=0的解.
若f(χ1,χ2,χ3)=(aχ1+2χ2-3χ3)2+(χ2-2χ3)2+(χ1+aχ2-χ3)2是正定二次型,则a的取值范围是_______.
设函数f(u,v)具有二阶连续偏导数,函数g(y)连续可导,且g(y)在y=1处取得极值g(1)=2.求复合函数z=f(xg(y),x+y)的二阶混合偏导数在点(1,1)处的值.
已知A=,则Ax=0解空间的规范正交基是__________.
随机试题
相当大的,重要的adj.c___________
女婴,1岁,体重10kg,生后母乳喂养,8月始添加辅食,因不能站立而就诊。查体:精神好,面稍苍白,消瘦,腹部皮下脂肪厚度为0.3cm。肌肉松弛。可能的诊断为
引起我国门脉高压最常见的病因是
影响正常舒张压的主要因素是
肺心病心功能失代偿期多表现为
在监理合同履行期间,监理人可行使的权力包括()。
根据《企业会计准则第36号一关联方披露》的规定,下列表述正确的有()。
践土之盟
根据动作技能对外部环境信息的依赖程度,可将动作技能划分为
在OSI七层协议模型中,TCP是(183)的协议。使用(184)次握手协议建立连接,当主动方发出SYN连接请求后,等待对方回答(185)。这种建立连接的方法可以防止(186)。TCP使用(187)进行流量控制。
最新回复
(
0
)