首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)==r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
admin
2019-05-14
62
问题
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=
=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n一r+1个.
选项
答案
因为r(A)=r<n,所以齐次线性方程组AX=0的基础解系含有n一r个线性无关的解向量,设为ξ
1
,ξ
2
,…,ξ
n—r
. 设η
0
为方程组AX=b的一个特解, 令β=η
0
,β
1
=ξ
1
+η
0
,β
2
=ξ
2
+η
0
,…,β
n—r
=ξ
n—r
+η
0
,显然β
0
,β
1
,β
2
,…,β
n—r
为方程组AX=b的一组解. 令k
0
β
0
+k
1
β
1
+…+k
n—r
β
n—r
=0,即 (k
0
+k
1
+…+k
n—r
)η
0
+k
1
ξ
1
+k
2
ξ
2
+…+k
n—r
ξ
n—r
=0, 上式两边左乘A得(k
0
+k
1
+…+k
n—r
)b=0, 因为b为非零列向量,所以k
0
+k
1
+…+k
n—r
=0,于是 k
1
ξ
1
+k
2
ξ
2
+…+k
n—r
ξ
n—r
=0, 注意到ξ
1
,ξ
2
,…,ξ
n—r
线性无关,所以k
1
=k
2
=…=k
n—r
=0, 故β
0
,β
1
,β
2
,…,β
n—r
线性无关,即方程组AX=b存在由n一r+1个线性无关的解向量构成的向量组.设β
1
,β
2
,…,β
n—r+2
为方程组AX=b的一组线性无关解, 令γ
1
=β
2
一β
1
,γ
2
=β
3
一β
1
,…,γ
n—r+1
=β
n—r+1
一β
1
,根据定义,易证γ
1
,γ
2
,…,γ
n—t+1
线性无关,又γ
1
,γ
2
,…,γ
n—t+1
为齐次线性方程组AX=0的一组解,即方程组AX=0含有n一r+1个线性无关的解,矛盾,所以AX=b的任意n一r+2个解向量都是线性相关的,所以 AX=b的线性无关的解向量的个数最多为n一r+1个.
解析
转载请注明原文地址:https://kaotiyun.com/show/Nq04777K
0
考研数学一
相关试题推荐
求函数u=xy+2yz在约束条件x2+y2+z2=10下的最大值和最小值。
一容器的内侧是由曲线y=x2绕y轴旋转而成的曲面,其容积为72πm3,其中盛满水,若将容器中的水从容器的顶部抽出64πm3,至少需做多少功?(长度单位:m,重力加速度为gm/s2,水的密度为103kg/m3。)
过点(2,0,一3)且与直线垂直的平面方程为___________。
设f(x)在[a,+∞)上连续,f"(x)在(a,+∞)内存在且大于零,记F(x)=(x>a),证明F(x)在(a,+∞)内单调增加。
求函数y=ln(x+)的反函数。
设X1,…,Xn是取自总体X的一个简单随机样本,X的概率密度为(Ⅰ)求未知参数θ的矩估计量;(Ⅱ)求未知参数θ的最大似然估计量.
将一枚骰子独立地重复掷n次,以Sn表示各次掷出的点数之和.(Ⅰ)证明:当n→+∞时,随机变量Un=的极限分布是标准正态分布;(Ⅱ)为使P{|-3.5|<0.10}≥0.95,至少需要将骰子重复掷多少次?
设随机变量X服从(0,1)上的均匀分布,求下列Yi(i=1,2,3,4)的数学期望和方差:(Ⅰ)Y1=eX;(Ⅱ)Y2-2lnX;(Ⅲ)Y3=1/X;(Ⅳ)Y4=X2.
设集合A={1,2,a,b},B={2,4,c,d},已知A∪B={1,2,3,4,5,6},A∩B={2,4),A-B={1,3},那么a,b,c,d可以是_______.
随机试题
患者,女,66岁。右侧股骨颈头下型骨折。治疗应首选
院内感染所致肺炎中,主要病原体是
下列关于行政裁决的表述哪些是不正确的()。
按被评估设备现时的完全重置成本(重置全价)扣减其各项损耗价值来确定被评估设备价值的方法是()。
在施工管理项目组织工具中,通过树状图的方式对一个项目的结构进行逐层分解,以反映组成该项目的所有工作任务的是()。
铁路隧道围岩的特性主要包括()。
关于银行代理黄金业务论述正确的是()。
美国是世界上经济最发达的国家,曝光的企业丑闻数量却比发展中国家多得多,这充分说明经济的发展不一定带来道德的进步。企业作为社会财富最重要的创造者之一,也应该为整个社会道德水准的提升做出积极的贡献。如果因为丑闻迭出而导致社会道德风气的败坏,那么我们完全有理由怀
体现矛盾的普遍性和特殊性的辩证关系原理就要坚持
Poetrydoesn’tmattertomostpeople.Onehastowonderifpoetryhasanyplaceinthe21stcentury,whenmusicvideosandsat
最新回复
(
0
)