首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设某次考试的成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程. 附表:t分布表 P(t(n)≤tp(n))=p
设某次考试的成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程. 附表:t分布表 P(t(n)≤tp(n))=p
admin
2019-04-08
54
问题
设某次考试的成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.
附表:t分布表 P(t(n)≤t
p
(n))=p
选项
答案
σ
2
未知、单个正态总体均值μ的双边检验:H
0
:μ=70;H
1
:μ≠70. 应取统计量[*] 当原假设H
0
为真时,拒绝域常取为|T|>t
α/2
(n-1),也可取|T|>t
1-α/2
(n-1).到底取哪一种?要看哪一种能由α=0.05算出0.95或0.975,从而能利用所给的t分布表查出t
p
(n).显然只能取 [*] 因为由它可查出 t
1-α/2
(n一1)=t
0.975
(35)=2.0301. 于是再由n=36,[*]=66.5,S=15,t
0.975
(36-1)=2.0301可算出 [*] 因而应接受H
0
,即在显著性水平0.05下,可以认为这次考试全体考生的平均成绩为70分.
解析
转载请注明原文地址:https://kaotiyun.com/show/Nx04777K
0
考研数学一
相关试题推荐
设二维随机变量(X,Y)的概率密度为则P{X+Y≤1}=________。
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.(1)求导弹运行的轨迹满足的微分方程及初始条件;(2)导弹运行方程.
假设目标出现在射程之内的概率为0.7,这时一次射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率.
确定常数a,b的值,使得ln(1+2x)+=x+x2+o(x2).
n个小球和n个盒子均编号1,2,…,n,将n个小球随机地投入n个盒中去,每盒投1个球.记X为小球编号与所投之盒子编号相符的个数,求E(X).
设求实对称矩阵B,使A=B2.
求I=dy,其中L是以原点为圆心,R为半径的圆周,取逆时针方向,R≠1.
设函数f(x)满足xf’(x)-2f(x)=-x,且由曲线y=f(x),x=1及x轴(x≥0)所围成的平面图形为D.若D绕x轴旋转一周所得旋转体体积最小,求:曲线y=f(x);
设三维向量空间R3中的向量ξ在基α1=(1,-2,1)T,α2=(0,1,1)T,α3=(3,2,1)T下的坐标为(x1,x2,x3)T,在基β1,β2,β3下的坐标为(y1,y2,y3)T,且y1=x1一x2一x3,y2=一x1+x2,y3=x1+2x3
设n为正整数,F(x)=证明:对于给定的n,F(x)有且仅有一个零(实)点,并且是正的,记该零点为an;
随机试题
Itwasasummerevening.Iwassittingbytheopenwindow,readinga【C1】________Suddenly,Iheardsomeonecrying,"Help!Help!
用于控制疟疾症状的最佳抗疟药是
最可能的诊断是假如CT检查发现患者为脑叶出血,血肿超过40ml,患者颅压增高症状明显加重,处于浅昏迷状态,应首选下列何项措施
A.左下6B.右上5C.右上1D.右上ⅣE.左上Ⅲ左上乳尖牙
患者,女,35岁。月经周期正常,惟月经量少、色红、质稠,经期鼻衄,量不多,色暗红,伴手足心热,潮热颧红,舌红少苔,脉细数。其证候是
资产组合M的期望收益率为18%,标准离差为27.9%;资产组合N的期望收益率为13%,标准离差率为1.2。投资者张某和赵某决定将其个人资金投资于资产组合M和N中,张某期望的最低收益率为16%,赵某投资于资产组合M和N的资金比例分别为30%和70%。
建设工程的屋面防水工程、有防水要求的卫生间、房间和外墙面的防渗漏,最低保修期限为()年。
8,17,24,37,()
《民法典》规定:“物权的种类和内容,由法律规定。”对此,下列说法中正确的是()
Thatshewas(i)_____rockclimbingdidnotdiminishher(ii)_____tojoinherfriendsonarock-climbingexpedition.
最新回复
(
0
)