首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶连续可导,g(x)连续,且f’(x)=lncosx+=一2.则( ).
设f(x)二阶连续可导,g(x)连续,且f’(x)=lncosx+=一2.则( ).
admin
2021-01-12
46
问题
设f(x)二阶连续可导,g(x)连续,且f’(x)=lncosx+
=一2.则( ).
选项
A、f(0)为f(x)的极大值
B、f(0)为f(x)的极小值
C、(0,f(0))为y=f(x)的拐点
D、f(0)不是f(x)的极值,(0,f(0))也不是y=f(x)的拐点
答案
C
解析
显然f’(0)=0,由
=一2得g(0)=0,g’(0)=一2.
由
得f’(x)=lncosx+
f"(x)=
+g(x),f"(0)=0.
f"(0)=
一1—2=一3<0,
由极限的保号性,存在δ>0,当0<|x|<δ时,
当x∈(0,δ)时,f"(x)<0;当x∈(一δ,0)时,f"(x)>0,
故(0,f(0))为y=f(x)的拐点,选(C).
转载请注明原文地址:https://kaotiyun.com/show/OJ84777K
0
考研数学二
相关试题推荐
设二次型f(χ1,χ2,χ3)=5χ12+aχ22+3χ32-2χ1χ2+6χ1χ3-6χ2χ3的矩阵合同于.(Ⅰ)求常数a的值;(Ⅱ)用正交变换法化二次型f(χ1,χ2,χ3)为标准形.
已知y*(x)=xe—x+e—2x,y*(x)=xe—x+xe—2x,y*(x)=xe—x+e—2x+xe—2x是某二阶线性常系数微分方程y"+py’+qy=f(x)的三个特解.(Ⅰ)求这个方程和它的通解;(Ⅱ)设y=y(x)是该方程满足y(0)=0,
[*]
[*]
设2关于变量x,y具有连续的二阶偏导数,并作变量变换x=eu+v,y=eu-v,请将方程变换成z关于u,v的偏导数的方程.
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(-1,1),使得f"’(ξ)=3.
设f(χ)连续,且满足f(χ)+2∫0χf(t)dt=χ2+,则关于f(χ)的极值问题有().
从船上向海中沉放某种探测仪器,按探测要求,需要定仪器的下沉深度),(从海平面算起与下沉速度v之间的函数关系,设仪器在重力的作用下,从海平面由静止开始铅直下沉。在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m,体积为B,海水比重为ρ,仪器所受的阻力与下沉
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y1=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成。若将容器内盛满的水从容器顶部全部抽出,至少需要做多少功?(长度单位:m,重力加速度为gm/s2,水的密度为103kg/m3
设f(χ)=求f′(χ)并讨论f′(χ)在χ=0处的连续性.
随机试题
心包积液患者查体的特征性表现是()
女孩,6岁,阵发性腹痛半年。查体:左腹部可触及肿块,表面光滑,囊性感。追问病史时有一次大量排尿后肿块缩小后又恢复原状史。初步诊断是
下列哪项与带下病的产生无密切关系
慢性肺源性心脏病(肺心病)患者处于肺、心功能失代偿期,其主要临床表现是()
外交人员的派遣,须事先征得接受国同意的人员是哪些?()
下列不属于票据发行便利优点的是()。
货币供给机制是由()两个层次构成的货币制造系统。
社会心理学发展的经验描述阶段指的是()。
设方程组无解,则a=___________.
Itisacommonplaceamongmoraliststhatyoucannotgethappinessbypursuingit.Thisisonlytrueifyoupursueit【C1】______.
最新回复
(
0
)