首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,且|A|=a≠0,则|(kA)*|=_____________.
设A为n阶矩阵,且|A|=a≠0,则|(kA)*|=_____________.
admin
2019-11-25
31
问题
设A为n阶矩阵,且|A|=a≠0,则|(kA)
*
|=_____________.
选项
答案
k
n(n-1)
a
n-1
解析
因为(kA)
*
=k
n-1
A
*
,且|A
*
|=|A|
n-1
,所以
|(kA)
*
|=|k
n-1
A
*
|=k
n(n-1)
|A|
n-1
=k
n(n-1)
a
n-1
.
转载请注明原文地址:https://kaotiyun.com/show/OoD4777K
0
考研数学三
相关试题推荐
设γ1,γ2,…,γt和η1,η2…ηs分别是Ax=0和Bx=0的基础解系.证明:Ax=0和Bx=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
证明:r(A+B)≤r(A)+r(B).
设A是n阶实对称矩阵,λ1,λ2,…,λn是A的n个互不相同的特征值,ξ1是A的对应于λ1的一个单位特征向量,则矩阵B=A一λ1ξ1ξ1T的特征值是_______.
已知ξ1,ξ2是方程(λE一A)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量的是()
将函数f(x)=展开成x的幂级数,并指出其收敛区间.
设f(x)在区间(0,1)内可导,且导函数f’(x)有界,证明:级数绝对收敛.
证明:方程xα=lnx(α<0)在(0,+∞)上有且仅有一个实根.
已知齐次线性方程组(I)为齐次线性方程组(Ⅱ)的基础解系为ξ1=[一1,1,2,4]T,ξ2=[1,0,1,1]T(1)求方程组(I)的基础解系;(2)求方程组(I)与(Ⅱ)的全部非零公共解,并将非零公共解分别由方程组(I),(Ⅱ
设z=z(x,y)是由9x2-54xy+90y2-6yz-z2+18=0确定的函数,求z=z(x,y)的极值点和极值。
随机试题
切削时,切屑排向工件已加工表面的车刀,此时刀尖位于主切削刃的()点。
时间序列分析中长期趋势的表现形式是多种多样的,常用的趋势线数学模型主要有哪几种?
患者男,17岁。高热5天伴纳差3天就诊,当天查血压105/75mmHg,左趾甲沟部破溃流脓,左侧小腿肿胀,皮肤发红不明显,白细胞计数20×109/L,中性粒细胞为0.85%。经处理3天后病人高热不退,且血压和血小板计数下降,此时病人可能合并有
A.Ⅰ期临床试验B.Ⅱ期临床试验C.Ⅲ期临床试验D.Ⅳ期临床试验E.临产前实验治疗作用的初步评价阶段是
公路工程进行竣工验收应具备的条件有()。
下列关于软件的说法,正确的有()。
为了推进和实现区域经济的协调发展,国务院2009年通过和发布的区域规划有()。
A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分.D.条件(1)充分,条件(2)也充分.E.条件(1)和条件(2)单独都不充分,条件(1)和条件
Inthenineteenthcentury,poorEuropeansseekingtomaketheirfortunesturnedtoAmericaasamatterofcourse.
Forthispart,youareallowed30minutestowriteashortessayentitledAJobFirstoraSatisfactoryJobFirst?Youshouldwr
最新回复
(
0
)