首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
一条自动生产线连续生产n件产品不出故障的概率为e-λ,n=0,1,2,….假设产品的优质品率为p(0<p<1).如果各件产品是否为优质品相互独立. (Ⅰ)计算生产线在两次故障间共生产k件(k=0,1,2,…)优质品的概率; (Ⅱ)若已知在某两次故障间该生产
一条自动生产线连续生产n件产品不出故障的概率为e-λ,n=0,1,2,….假设产品的优质品率为p(0<p<1).如果各件产品是否为优质品相互独立. (Ⅰ)计算生产线在两次故障间共生产k件(k=0,1,2,…)优质品的概率; (Ⅱ)若已知在某两次故障间该生产
admin
2020-03-05
25
问题
一条自动生产线连续生产n件产品不出故障的概率为
e
-λ
,n=0,1,2,….假设产品的优质品率为p(0<p<1).如果各件产品是否为优质品相互独立.
(Ⅰ)计算生产线在两次故障间共生产k件(k=0,1,2,…)优质品的概率;
(Ⅱ)若已知在某两次故障间该生产线生产了k件优质品,求它共生产m件产品的概率.
选项
答案
(Ⅰ)应用全概率公式,有 [*] (Ⅱ)当m<k时,P(A
m
|B
k
)=0;当m≥k时, [*]
解析
记事件B
k
=“两次故障间共生产k件优质品”,B
k
显然与两次故障间生产的产品总数有关.记A
n
=“两次故障间共生产n件产品”,n=0,1,2,….A
0
,A
1
,A
2
,…构成一个完备事件组.在应用全概率公式时,条件概率P(B
k
|A
n
)的计算是一个n重伯努利概型问题.这是因为每件产品的质量均有优质品与非优质品之分,并且各件产品是否为优质品是相互独立的,又每件产品的优质品率都是p.因此当,n<k时,P(B
k
|A
n
)=0,当n≥k时,P(B
k
|A
n
)=
p
k
q
n-k
.
转载请注明原文地址:https://kaotiyun.com/show/OuS4777K
0
考研数学一
相关试题推荐
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα-2A2α,那么矩阵A属于特征值λ=-3的特征向量是()
设平面区域D:1≤x2+y2≤4,f(x,y)是区域D上的连续函数,则等于().
设随机变量序列X1,X2,…,Xn,…相互独立,则根据辛钦大数定律,当n→∞时Xi依概率收敛于其数学期望,只要{Xn,n≥1}
设曲线L:x2+y2+x+y=0,取逆时针方向,证明:I=∫L-ysinx2dx+xcosy2dy<
设在上半平面D={(x,y)丨y>0}内,函数f(x,y)具有连续偏导数,且对任意的t>0都有f(tx,ty)=t-2f(x.y).证明:对D内的任意分段光滑的有向简单闭曲线L,都有
设总体X的概率密度为f(x)=,其中未知参数θ>0,设X1,X2,…,Xn是来自总体X的简单样本.该估计量是否是无偏估计量?说明理由.
若正项级数un收敛,证明:收敛.
设A,B是两个n阶实对称矩阵,并且A正定.证明:(1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵;(2)当|ε|充分小时,A+εB仍是正定矩阵.
随机试题
纳税担保的具体方式包括()。
患者女性,31岁,因晕车而剧烈呕吐,继而呕吐新鲜血液量约80ml,无腹痛、腹泻,无大汗及黑矇等症状。查体:营养状态良好,腹平软,无压痛反跳痛肌紧张,肝脾肋下未触及。既往身体健康,否认胃病及肝病史。其出血最可能的原因是
A.蒲肯野细胞B.心室肌C.房室交界D.心房肌E.窦房结传导速度最慢的是()
思维奔逸
依照《消费者权益保护法》的规定,下列经营者的哪一行为,消费者可以依法按其所支付价款的两倍要求经营者赔偿其损失?()
当地下水位较高,潜水层埋藏不深,为了截流地下水及降低地下水位,可采用的排水设施有()。
下列表述中,正确的有()。
在Telnet中使用NVT的目的是()。
Morethan6000childrenwereexpelled(开除)fromUSschoolslastyearforbringinggunsandbombstoschool,theUSDepartmentof
Don’tWorry,BeHappyA)Acynic,AmbroseBierceremarkedinhis"Devil’sDictionary",is"ablackguard(无赖,恶棍)whosefaulty
最新回复
(
0
)