首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
admin
2017-12-31
82
问题
设A为n阶非零矩阵,且存在自然数k,使得A
k
=O.证明:A不可以对角化.
选项
答案
设矩阵A可以对角化,即存在可逆阵P,使得 [*] 两边k次幂得 [*] 从而有λ
1
=λ
2
=…=λ
n
=0, 于是P
-1
AP=O,进一步得A=O,矛盾,所以矩阵A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/pJX4777K
0
考研数学三
相关试题推荐
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α1+α3,Aα3=2α2+3α3求矩阵A的特征值;
设向量组α1=(a,2,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,6,c)T。试问:当a,b,c满足什么条件时β可由α1,α2,α3线性表出,但表示不唯一?并求出一般表达式。
设有线性方程组证明:若α1,α2,α3,α4两两不相等,则此线性方程组无解;
设有3维列向量问λ取何值时β可由α1,α2,α3线性表示,但表达式不唯一?
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且A的秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=6的通解X=
设矩阵Am×n正定,证明:存在正定阵B,使A=B2。
设矩阵且|A|=一1,又设A的伴随矩阵A*有特征值λ0,属于λ0的特征向量为α=(一1,一1,1)T。求a,b,c及λ0的值。
已知下列非齐次线性方程组(Ⅰ)(Ⅱ):求解方程组(Ⅰ),用其导出组的基础解系表示通解;
设X的密度为求:(1)常数C和X的分布函数F(x);(2)P(0≤X≤1)及Y=e-|X|的密度fY(y)。
随机试题
淋证的主要病机有()(2007年第145题)
下面哪项不是心脏大血管MRA技术要点
恶性程度最高的甲状腺癌是
投保人在与保险人签订保险合同时,故意隐瞒事实,下列说法不正确的是:()
某社区现位于江苏省邳州市城市规划区内,该社区居委会前身村民委员会于1998年6月依法征用本村第四组集体耕地10.21亩(6806.66平方米)建设村胶合板厂,该胶合板厂厂长系本村村民王某。2000年经土地初始登记办理了以权利人为胶合板厂的国有土地工业使用权
________既是儿童的初始生活环境,也是儿童的初始教育环境。
在宪法基本原则系统中,处于核心和主导地位的宪法原则是()。
Onbehalfofourcollege,______(向全体老师表示感谢,我倍感荣幸).
Inthelate1960s,manypeopleinNorthAmericaturnedtheirattentiontoenvironmentalproblems,andnewsteel-and-glassskyscr
Theinnervoiceofpeoplewhoappearunconsciouscannowbeheard.Forthefirsttime,researchershavestruckupaconversation
最新回复
(
0
)