首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
admin
2017-12-31
55
问题
设A为n阶非零矩阵,且存在自然数k,使得A
k
=O.证明:A不可以对角化.
选项
答案
设矩阵A可以对角化,即存在可逆阵P,使得 [*] 两边k次幂得 [*] 从而有λ
1
=λ
2
=…=λ
n
=0, 于是P
-1
AP=O,进一步得A=O,矛盾,所以矩阵A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/pJX4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=XTAX=ax12+222一223+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为一12.利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵。
已知二次型f(x1,x2,x3)=4x22一3x32+4x1x2—4x1x3+8x2x3。(1)写出二次型f的矩阵表达式;(2)用正交变换把二次型f化为标准形,并写出相应的正交矩阵。
设向量α=(α1α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT。求:矩阵A的特征值和特征向量。
设向量α=(α1α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT。求:A2;
问a、b为何值时,线性方程组有唯一解、无解,有无穷多组解?并求出有无穷多解时的通解。
设x的密度为,一∞<x<+∞,则X的分布函数F(x)=________。
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时),已知X和Y的联合分布函数为:求两个部件的寿命都超过100小时的概率。
设随机变量X的分布函数为其中参数α>0,β>1,设X1,X2,…,Xn为来自总体X的简单随机样本。(Ⅰ)当α=1时,求未知参数β的矩估计量;(Ⅱ)当α=1时,求未知参数β的最大似然估计量;(Ⅲ)当β=2时,求未知参数α的最大似然估计量。
设α1,α2,α3,α4为四维列向量组,且α1,α2,α3线性无关,α4=α1+α2+2α3.已知方程组[α1一α2,α2+α3,一α1+aα2+α3]X=α4有无穷多解.(1)求a的值;(2)用基础解系表示该方程组的通解.
随机试题
2008年5月12日我国四川发生的里氏8.0级地震,牵动了所有中国人的心,举国悲恸,下列关于地震后发生的相关涉外法律关系的表述,正确的是:
下面四个选项中,说法不正确的一项为()。
某项目起初投资为100万元,第1、第2、第3、第4年年末的净现金流分别为40万元、45万元、45万元、45万元。如果折现率为25%,其财务净现值为()万元。
影响OC曲线的主要因素有()。
普通高中演奏模块中培养学生演奏技能的正确方法是()。
在入警训练中,教官强调作为一名人民警察应当遵守的纪律,下列说法错误的是:
以御史台作为中央最高监察机关的朝代有()。
阅读以下说明,回答问题1~3,将答案填入对应的解答栏内。[说明]目前大多数交换机都为可管理的交换机,可以为其配置IP地址、子网掩码、默认网关等参数,使其成为网络中的一台主机,从而可以远程管理和配置交换机。在通过交换机的console
软件生命周期可分为定义阶段,开发阶段和维护阶段。详细设计属于()。
Thereareanumberofformatsforreportingresearch,suchasarticlestoappearinjournals,reportsaddressedtofundingagenc
最新回复
(
0
)