首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,4,2)T,α2=(2,7,3)T,α3=(0,1,a)T可以表示任意一个三维向量,则a的取值是__________.
已知α1=(1,4,2)T,α2=(2,7,3)T,α3=(0,1,a)T可以表示任意一个三维向量,则a的取值是__________.
admin
2019-03-18
50
问题
已知α
1
=(1,4,2)
T
,α
2
=(2,7,3)
T
,α
3
=(0,1,a)
T
可以表示任意一个三维向量,则a的取值是__________.
选项
答案
a≠1
解析
α
1
,α
2
,α
3
可以表示任一个3维向量,因此向量α
1
,α
2
,α
3
与ε
1
=(1,0,0)
T
,ε
2
=(0,1,0)
T
,ε
3
=(0,0,1)
T
是等价向量,因此α
1
,α
2
,α
3
的秩为3,即|α
1
,α
2
,α
3
|≠0,于是
因此a≠1.
转载请注明原文地址:https://kaotiyun.com/show/PIV4777K
0
考研数学二
相关试题推荐
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,计算f(n)(2).
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等;(2)举一个2阶方阵的例子说明(1)的逆命题不成立;(3)当A,B均为实对称矩阵时,试证(1)的逆命题成立.
求下列不定积分(其中a为常数):
设向量α=(1,0,一1)T,矩阵A=ααT,a为常数,n为正整数,则行列式|aE一An|=________.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设三阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A的属于特征值6的特征向量.(1)求A的另一特征值和对应的特征向量;(2)求矩阵A.
已知矩阵A=有3个线性无关的特征向量,λ=2是A的2重特征值,试求可逆矩阵P,使P一1AP成为对角矩阵.
设α=(α1,α2,…,αn)T是Rn中的非零向量,方阵A=ααT.(1)证明:对正整数m,存在常数t,使Am=tm一1A,并求出t;(2)求一个可逆矩阵P,使P一1AP=Λ为对角矩阵.
求由方程2x2+2y2+z2+8xz一z+8=0所确定的函数z=f(x,y)的极值点.
随机试题
胃肠积滞多见牙疳可见
启发学生的积极思维通常采用的方法是()。
下列关于党史上的“第一”。表述错误的是()。
大黄、栀子同用的方剂是
A、系统误差B、RSDC、绝对误差D、定量限E、相关方法误差
功能降气化痰的药是
工程变更,是指施工过程中出现了与签订合同时的预计条件不一致的情况,而需要改变原定施工承包范围内的某些工作内容。下列说法正确的是( )。
根据弗洛伊德的观点,由本能的冲动所造成的焦虑是()。
中华文化绵延5000年,有其独特的价值体系,已成为中华民族的基因。中华优秀传统文化是中华民族的突出优势,________着中华民族最深沉的精神追求,为中华民族生生不息、发展壮大提供了丰厚________,潜移默化地影响着中国人的思想方式和行为方式,至今仍具
Britain’sprivateschoolsareoneofitsmostsuccessfulexports.Thechildrenofthewealthy【C1】______tothem,whetherfromChi
最新回复
(
0
)