首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(08年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
(08年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
admin
2017-05-26
89
问题
(08年)设A为3阶矩阵,α
1
,α
2
为A的分别属于特征值-1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
.
(Ⅰ)证明α
1
,α
2
,α
3
线性无关;
(Ⅱ)令P=[α
1
,α
2
,α
3
],求P
-1
AP.
选项
答案
5—23(Ⅰ)设存在一组常数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=0 ① 用A左乘①式两端,并利用Aα
1
=-α
1
,Aα
2
=α
2
, -k
1
α
1
+(k
2
+k
3
)α
2
+k
3
α
3
=0 ② ①-②,得 2k
1
α
1
-k
3
α
2
=0 ③ 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关,从而由③式知k
1
=k
3
=0,代入①式得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关. (Ⅱ)由题设条件可得 AP=A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
] =[-α
1
,α
2
,α+α
3
]=[α
1
,α
2
,α
3
][*] 由(Ⅰ)知矩阵P可逆,用P
*-1
左乘上式两端,得 P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/U3H4777K
0
考研数学三
相关试题推荐
e[解法一]又故原式=e.[解法二]设,则当x→∞时,u→0,于是原式=而由洛必达法则,得故原式:e.
设随机变量x1~N(0,1),X2一B(),X3服从于参数为λ=1的指数分布,设则矩阵A一定是().
已知(X,Y)的概率密度为1108服从参数为_____的_____分布.
设a1,a2,…,as均为n维列向量,A是m×n矩阵,则下列选项正确的是().
设每天生产某种商品g单位时的固定成本为20元,边际成本函数C’(q)=0.4g+2元/件.求成本函数C(g).如果该商品的销售价为18元/件,并且所有产品都能够售出,求利润函数L(q),并问每天生产多少件产品时才能获得最大利润?
当x→1时,函数的极限().
如下图,连续函数y=f(x)在区间[-3,-2],[2,3]上图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的上、下半圆周.设F(x)=∫0xf(t)dt,则下列结论正确的是().
设当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n等于
设f(x)为恒大于零的可微函数,当时,恒有f’(x)sinx<f(x)cosx则当时,下列不等式恒成立的是
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为,求Aβ.
随机试题
大跨度拱式结构主要利用混凝土良好的()。
中国传统的情感管理方法。
不属于输血不良反应的是
患者,男,40岁。烦渴多饮2年,伴口干舌燥,尿频量多,多汗,舌边尖红,苔薄黄,脉洪数。其治疗主方为
2012年12月5日,甲公司向其子公司乙公司销售一批商品,不含增值税的销售价格为2000万元,增值税税额为340万元,款项已收存银行;该批商品成本为1600万元,不考虑其他因素,甲公司在编制2012年度合并现金流量表时,“销售商品、提供劳务收到的现金”项目
某餐饮公司2011年10月餐饮收入700万元,各项成本费用400万元。另收取包间费3万元、酒水饮料费20万元、赔偿金1万元,该公司当月应计算缴纳的营业税为()。
我国古代的四大发明不包括()
小周、小吴、小郑三人中,一人是工人,一人是农民,一人是知识分子。已知:小郑的年龄比知识分子大;小周的年龄和农民不同;农民的年龄比小吴小。根据以上情况,判断正确的是()。
以下关于外包和外包管理的叙述中,不正确的是:()。
【H1】【H5】
最新回复
(
0
)