首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(08年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
(08年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
admin
2017-05-26
140
问题
(08年)设A为3阶矩阵,α
1
,α
2
为A的分别属于特征值-1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
.
(Ⅰ)证明α
1
,α
2
,α
3
线性无关;
(Ⅱ)令P=[α
1
,α
2
,α
3
],求P
-1
AP.
选项
答案
5—23(Ⅰ)设存在一组常数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=0 ① 用A左乘①式两端,并利用Aα
1
=-α
1
,Aα
2
=α
2
, -k
1
α
1
+(k
2
+k
3
)α
2
+k
3
α
3
=0 ② ①-②,得 2k
1
α
1
-k
3
α
2
=0 ③ 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关,从而由③式知k
1
=k
3
=0,代入①式得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关. (Ⅱ)由题设条件可得 AP=A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
] =[-α
1
,α
2
,α+α
3
]=[α
1
,α
2
,α
3
][*] 由(Ⅰ)知矩阵P可逆,用P
*-1
左乘上式两端,得 P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/U3H4777K
0
考研数学三
相关试题推荐
若矩阵A经过有限次初等行变换变为B,则下列结论中错误的是().
设函数f(x)在点x=a处可导,则甬数|f(x)|在点x=a处不可导的充分条件是().
设二维正态变量(X,Y)的边缘分布为X一N(1,22),Y一N(0,1)且pxy=0,则P{X+1,
设X1,X2,…,Xn是来自正态总体X的简单随机样本,Y1=1/6(X1+…+X6),Y2=1/3(X7+X8+X9),S2=(X1-Y2)2,Z=,证明统计量Z服从自由度为2的t分布.
设三阶实对称矩阵A的各行元素之和均为3,向量a1=(-1,2,-1)T=(0,-1,1)T是线性方程组Ax=0的两个解;(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=L;(Ⅲ)求A及(A-(3/2)E)6,其中E为三阶
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
设函数f(x)在[a,b]上满足a≤f(x)≤b,|f’(x)|≤q<1,令un=f(un-1),n=1,2,3,…,u0∈[a,b],证明:(un+1-un)绝对收敛.
[*]利用奇偶函数在对称区间上的积分性质得
计算二重积分.其中D为x2+y2=1,x2+y2=2x所围中间一块区域.
设函数且1+bx>0,则当f(x)在x=0处可导时,f’(0)=________.
随机试题
吊销违法者的经营许可证是()。
过程能力
患者,男,46岁。近日双眼睑水肿,尿呈洗肉水样,血压150/90mmHg,尿蛋白(++),尿沉渣有少量红细胞,大量颗粒管型。其病变在
A.胎漏B.胎动不安C.滑胎D.堕胎E.小产
《中华人民共和国执业医师法》适用于()。
甲为一保姆,受家庭指派前往买菜,在菜市场因价格与菜贩乙发生口角,并被乙打伤。对于保姆甲的受害,其责任承担,下列表述正确的是:
下列关于施工机械使用费的控制错误的是()。
关于人寿保险风险特殊性的说法,错误的是()
1,2,6,15,31,()
We’renowwitnessingtheemergenceofanadvancedeconomybasedoninformationandknowledge.Physical【B1】_______,rawmaterials
最新回复
(
0
)