首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(08年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
(08年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.
admin
2017-05-26
100
问题
(08年)设A为3阶矩阵,α
1
,α
2
为A的分别属于特征值-1,1的特征向量,向量α
3
满足Aα
3
=α
2
+α
3
.
(Ⅰ)证明α
1
,α
2
,α
3
线性无关;
(Ⅱ)令P=[α
1
,α
2
,α
3
],求P
-1
AP.
选项
答案
5—23(Ⅰ)设存在一组常数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=0 ① 用A左乘①式两端,并利用Aα
1
=-α
1
,Aα
2
=α
2
, -k
1
α
1
+(k
2
+k
3
)α
2
+k
3
α
3
=0 ② ①-②,得 2k
1
α
1
-k
3
α
2
=0 ③ 因为α
1
,α
2
是A的属于不同特征值的特征向量,所以α
1
,α
2
线性无关,从而由③式知k
1
=k
3
=0,代入①式得k
2
α
2
=0,又由于α
2
≠0,所以k
2
=0,故α
1
,α
2
,α
3
线性无关. (Ⅱ)由题设条件可得 AP=A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
] =[-α
1
,α
2
,α+α
3
]=[α
1
,α
2
,α
3
][*] 由(Ⅰ)知矩阵P可逆,用P
*-1
左乘上式两端,得 P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/U3H4777K
0
考研数学三
相关试题推荐
设
若f(一x)=f(x)(一∞
0由级数收敛知,因为级数收敛,因此其通项趋于0.
设f(x)在[0,1]上二阶可导且f’’(x)<0,证明:
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是().
设平面区域D={(x,y)|x3≤y≤1,一1≤x≤1},f(x)是定义在[一a,a](a≥1)上的任意连续函数,则=______________.
已知矩阵有三个线性无关的特征向量,求a的值,并求An.
设f’(x)=arccosx且f(0)=0,求定积分
已知三元二次型xTAx的平方项系数均为0,设α=(1,2,一1)T且满足Aα=2α.求该二次型表达式;
设当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n等于
随机试题
背景北京某工程据统计混凝土实物工作量约为23000m3,混凝土为商混不考虑现场搅拌,混凝土养护用水定额取700L/m3;拟定结构及前期阶段施工工期为300d;每天按照1.5个工作班计算。其中:K1=1.1,Q1=23000m3,N1=750L/m3,T
电算化档案资料管理的要求是什么?
锅炉压力容器与其他设备相比容易(),因此容易发生事故。
某单元格数据是文本格式的邮政编码,下列单元格的邮编输入方式正确的是______。
有关血液功能的叙述,正确的是
1999年10月1日,甲公司的退休职工王某在退休后6个月完成了一项方法发明创造,甲公司认为王某的发明与其在甲公司承担的本职工作有关,向王某提出该方法发明申请专利的权利属于甲公司,王某表示同意。2000年1月1日,甲公司向国务院专利行政部门提出发明专利的书面
以出让方式取得土地使用权的,属于房屋建设工程的,完成开发投资总额的()以上才可以进行建设用地使用权的转让。
发展社会主义民主政治,最根本的是要把()有机统一起来。
发展中国特色社会主义文化要坚持“两为”方向和“双百”方针。()
1963年,周恩来将我们党提出的一系列和平解决台湾问题的思想、政策和主张归纳为“一纲四目”。“一纲”即台湾必须统一于中国。“四目”为
最新回复
(
0
)