首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设对任意的x和y,有=4,用变量代换将f(x,y)变换成g(μ,ν),试求满足=μ2+ν2的常数a和b。
设对任意的x和y,有=4,用变量代换将f(x,y)变换成g(μ,ν),试求满足=μ2+ν2的常数a和b。
admin
2020-03-16
55
问题
设对任意的x和y,有
=4,用变量代换
将f(x,y)变换成g(μ,ν),试求满足
=μ
2
+ν
2
的常数a和b。
选项
答案
由题意g(μ,ν)=f(μν,[*](μ
2
一ν
2
)), [*]=νf
1
’
+μf
2
’
, [*]=μf
1
’
一νf
2
’
, 因此,有 [*] =a[ν
2
(f
1
’
)
2
+μ
2
(f
2
’
)
2
+2μνf
1
’
f
2
’
]一b[μ
2
(f
1
’
)
2
+ν
2
(f
2
’
)
2
一2μνf
1
’
f
2
’
] =(aν
2
一bμ
2
)(f
1
’
)
2
+(aμ
2
一bν
2
)(f
2
’
)
2
+2μν(a+b)f
1
’
f
2
’
=μ
2
+ν
2
。 利用(f
1
’
)
2
+(f
2
’
)
2
=4,即(f
2
’
)
2
=4一(f
1
’
)
2
得 (a+b)(ν
2
一μ
2
)(f
1
’
)
2
+2(a+b)μνf
1
’
f
2
’
+4aμ
2
一4bν
2
=μ
2
+ν
2
由此得a+b=0,4a=1,一4b=1, 故[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/Po84777K
0
考研数学二
相关试题推荐
求解下列方程.
设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)f’(0)≠0,当h→0时,若af(h)+bf(2h)-f(0)=o(h),试求a,b的值.
已知线性方程组(1)a、b为何值时,方程组有解?(2)当方程组有解时,求出方程组的导出组的一个基础解系.(3)当方程组有解时,求出方程组的全部解.
设4阶矩阵A满足A3=A.(1)证明A的特征值不能为0,1,和-1以外的数.(2)如果A还满足|A+2E|=8,确定A的特征值.
设。已知线性方程组Ax=b存在两个不同的解。求方程组Ax=b的通解。
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一[f’(x)]2≥0(x∈R).(1)证明:f(x1)f(x2)≥f2x1,x2∈R);(2)若f(0)=1,证明:f(x)≥ef’(0)xx(x∈R).
把y看作自变量,χ为因变量,变换方程=χ.
求极限:,a>0.
[2006年]已知非齐次线性方程组有3个线性无关的解.(I)证明方程组系数矩阵A的秩(A)=2;(Ⅱ)求a,b的值及方程组的通解.
[2014年]设平面区域D={(x,y)∣1≤x2+y2≤4,x≥0,y≥0),计算dxdy.
随机试题
下列对于胎盘早剥的处理,哪项恰当
二尖瓣狭窄最常见的早期症状为
中国人A(甲)与中国人B(女)于1984年结婚。1990年A、B先后赴英国留学,后双方分居。2000年A在英国法院提起离婚诉讼。2001年英国法院判决解除A、B之间的婚姻关系。A回国后向我国法院申请,要求承认英国法院的判决。下列选项哪些可以作为承认英国法院
下列经济业务,会导致企业资产总额发生变动的是()。
《火星报》的创办情况如何?该报在俄国社会民主工党建党过程中做出了怎样的贡献?
如果一个配置项的版本号为1.1,那么这个配置项处于“()”状态。
阅读以下应用说明、图和C++程序,将C++程序中(1)~(6)空缺处的语句填写完整。【说明】以下【C++程序】用于实现两个多项式的乘积运算。多项式的每一项由类Item描述,而多项式由类List描述。类List的成员函数主要有:cr
他现在不想出去。
Thestudyofliteraryinfluenceamongwomenwritershasfrequentlyadoptedamodelofsororalormatrilinealsharinginanoften
Time,asweknowit,isaveryrecentinvention.Themoderntime-senseishardlyolderthantheUnitedStates.Itisaby-produc
最新回复
(
0
)