首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设对任意的x和y,有=4,用变量代换将f(x,y)变换成g(μ,ν),试求满足=μ2+ν2的常数a和b。
设对任意的x和y,有=4,用变量代换将f(x,y)变换成g(μ,ν),试求满足=μ2+ν2的常数a和b。
admin
2020-03-16
93
问题
设对任意的x和y,有
=4,用变量代换
将f(x,y)变换成g(μ,ν),试求满足
=μ
2
+ν
2
的常数a和b。
选项
答案
由题意g(μ,ν)=f(μν,[*](μ
2
一ν
2
)), [*]=νf
1
’
+μf
2
’
, [*]=μf
1
’
一νf
2
’
, 因此,有 [*] =a[ν
2
(f
1
’
)
2
+μ
2
(f
2
’
)
2
+2μνf
1
’
f
2
’
]一b[μ
2
(f
1
’
)
2
+ν
2
(f
2
’
)
2
一2μνf
1
’
f
2
’
] =(aν
2
一bμ
2
)(f
1
’
)
2
+(aμ
2
一bν
2
)(f
2
’
)
2
+2μν(a+b)f
1
’
f
2
’
=μ
2
+ν
2
。 利用(f
1
’
)
2
+(f
2
’
)
2
=4,即(f
2
’
)
2
=4一(f
1
’
)
2
得 (a+b)(ν
2
一μ
2
)(f
1
’
)
2
+2(a+b)μνf
1
’
f
2
’
+4aμ
2
一4bν
2
=μ
2
+ν
2
由此得a+b=0,4a=1,一4b=1, 故[*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/Po84777K
0
考研数学二
相关试题推荐
已知线性方程组(1)a、b为何值时,方程组有解?(2)当方程组有解时,求出方程组的导出组的一个基础解系.(3)当方程组有解时,求出方程组的全部解.
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数,求φ"(y).
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵。证明矩阵Q可逆的充分必要条件是αTA-1α≠b。
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解。
求下列各微分方程的通解或在给定初始条件下的特解
设z=f(x2一y2,exy),其中f具有连续二阶偏导数,求
设λ1、λn分别为n阶实对称矩阵A的最小和最大特征值,X1、Xn分别为对应于λ1和λn的特征向量,记求二元函数f(x,y)=(x2+y2≠0)的最大值,并求最大值点.
[2003年]设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y′≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y′(0)=3/2的解.
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求A的特征值与特征向量;
微分方程y"’+y’+y=的一个特解应具有形式(其中a,b为常数)()
随机试题
下列关于中国古琴的说法中,正确的是()。
A.TATA盒B.GC盒C.CAAT盒D.CCAAT盒(2010年第132题)转录因子Spl的结合位点是
A.60°B.30°C.25°D.15°E.45°上颌窦癌两夹角50°照射时,楔形角应取
A.靠近抗原孔B.靠近抗体孔C.在两孔之间D.呈多条沉淀线E.不出现沉淀线双扩试验平板法中,若抗原含量较大,则反应沉淀线应
在估价中测算开发利润应掌握()。
教师讲课过程中的间隔和停顿是运用感知的()。
美国是一个移民国家,学校的学生来自不同的种族与家庭,通过接受系统的学校教育,学生掌握现代文化知识,建立独特的族群和阶层文化,社会也因此充满生机与活力。这主要体现了教育的()
刑法规定,故意杀人情节较轻的,处3年以上10年以下有期徒刑。对此追诉期限为()。
JohnaswellasJack______justbeenbackfromanimportantmeeting.
CareerBuilder.comnowoffersthemostfunctionalandeasy-to-useonlinejobsearchforScience&Biotechjobs.Infact,therea
最新回复
(
0
)