首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (1)证明:A可对角化; (2)求Am.
设A= (1)证明:A可对角化; (2)求Am.
admin
2019-08-23
44
问题
设A=
(1)证明:A可对角化;
(2)求A
m
.
选项
答案
(1)由|λE—A|=(λ-1)
2
(λ+2)=0得λ
1
=λ
2
=1,λ
3
=-2. 当λ=1时,由(E-A)X=0得λ=1对应的线性无关的特征向量为 [*] 当λ=-2时,由(-2E-A)X=0得λ=-2对应的线性无关的特征向量为ξ
3
=[*], 因为A有三个线性无关的特征向量,所以A可以对角化. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Q7N4777K
0
考研数学二
相关试题推荐
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记μn=f(n),n=1,2,…,又μ1<μ2,证明μn=+∞。
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A的特征值和特征向量;
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设α1,α2,…,αn是n个n维向量,且已知α1x1+α2x2+…+αnxn=0(*)只有零解.问方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0.证明:对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是又β=[1,2,3]T,计算:Anβ.
随机试题
在教师指导下巩固知识、培养各种技能和技巧的教学方法是【】
雄黄入药的正确炮制方法是
组成护理程序框架的理论是()。
阴道灌洗液的最佳温度是
招标人对已发出的招标文件进行必要的澄清或者修改的,应当在招标文件要求提交投标文件截止时间至少( )日前,以书面形式通知所有招标文件收受人。该澄清或者修改的内容为招标文件的组成部分。
甲、乙签订一份购销合同。甲以由银行承兑的汇票付款,在汇票的背书栏记载有“若乙不按期履行交货义务,则不享有票据权利”,乙又将此汇票背书转让给丙。下列对该票据有关问题的表述哪些是正确的?
保险利益从本质上说是某种( )。
中国古代雕塑不是一个独立的艺术门类。
2010年,江苏省全年粮食总产量达3235.1万吨,比上年增加5万吨;其中夏粮1105.3万吨,增长0.2%;秋粮2129.8万吨,增长0.1%。全年粮食面积为528.2万公顷,比上年增加1.0万公顷;棉花面积为23.6万公顷,减少1.7万公顷;油料面积5
《史记》是由司马迁撰写的中国第一部编年体通史。()
最新回复
(
0
)