首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (1)证明:A可对角化; (2)求Am.
设A= (1)证明:A可对角化; (2)求Am.
admin
2019-08-23
70
问题
设A=
(1)证明:A可对角化;
(2)求A
m
.
选项
答案
(1)由|λE—A|=(λ-1)
2
(λ+2)=0得λ
1
=λ
2
=1,λ
3
=-2. 当λ=1时,由(E-A)X=0得λ=1对应的线性无关的特征向量为 [*] 当λ=-2时,由(-2E-A)X=0得λ=-2对应的线性无关的特征向量为ξ
3
=[*], 因为A有三个线性无关的特征向量,所以A可以对角化. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Q7N4777K
0
考研数学二
相关试题推荐
设f(χ)=(akcoskχ+bksinkχ),其中口ak,bk(k=1,2,…,n)为常数.证明:(Ⅰ)f(χ)在[0,2π)必有两个相异的零点;(Ⅱ)f(m)(χ)在[0,2π)也必有两个相异的零点.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A能否相似于对角矩阵,说明理由.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A的特征值和特征向量;
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A2;
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n.
随机试题
急救医疗服务体系(EMSS)的中心环节是()
保税仓库的货物向主管海关核销工作应()
PresidentCoolidge’sstatement,"ThebusinessofAmericaisbusiness,"stillpointstoanimportanttruthtoday—thatbusinessin
检测机构可申报上一等级的评定的条件是()。
在铸铁中,按生产方法和组织性能分为()
“营业税金及附加”账户是资产类账户。()
建立国家反洗钱数据库,妥善保存金融机构提交的大额交易和可疑交易报告信息是()的职责。
2004年,国内某大型IT企业为扩大规模、增强实力采取了以下措施:1月,宣布兼并国内第二大PC销售商,实现产销一体化;4月,宣布将上年利润中的50%用于扩大再生产;8月,宣布耗巨资购进目前世界上最为先进的生产设备,实现生产流程全自动化。则该rr企业在20
Becauseourworkisverybusy,soweneedtorelaxatmidday.
WhyIBecameaTeacher:toPassonMyLoveofLiteratureA)Likelotsofpeople,IneverthoughtI’dbeateacherwhenIwasats
最新回复
(
0
)