首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (1)证明:A可对角化; (2)求Am.
设A= (1)证明:A可对角化; (2)求Am.
admin
2019-08-23
72
问题
设A=
(1)证明:A可对角化;
(2)求A
m
.
选项
答案
(1)由|λE—A|=(λ-1)
2
(λ+2)=0得λ
1
=λ
2
=1,λ
3
=-2. 当λ=1时,由(E-A)X=0得λ=1对应的线性无关的特征向量为 [*] 当λ=-2时,由(-2E-A)X=0得λ=-2对应的线性无关的特征向量为ξ
3
=[*], 因为A有三个线性无关的特征向量,所以A可以对角化. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Q7N4777K
0
考研数学二
相关试题推荐
设f(χ)=(akcoskχ+bksinkχ),其中口ak,bk(k=1,2,…,n)为常数.证明:(Ⅰ)f(χ)在[0,2π)必有两个相异的零点;(Ⅱ)f(m)(χ)在[0,2π)也必有两个相异的零点.
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A的特征值和特征向量;
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A2;
设A是n阶正定矩阵,证明:|E+A|>1.
设α1,α2,…,αn是n个n维向量,且已知α1x1+α2x2+…+αnxn=0(*)只有零解.问方程组(α1+α2)x1+(α2+α3)x2+…+(αn-1+αn)xn-1+
设A为实矩阵,证明ATA的特征值都是非负实数.
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0.证明:
设α1,…,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
随机试题
Scholarsmaintainthatsocialdevelopmentcaneasily__languagechanges.
A.肌颤搐恢复>20%.,TOF>2~3次B.肌颤搐恢复3次D.肌颤搐恢复
长期借款在支付利息的时候,应该()。
评估中可能存在的障碍有()。
强迫型人格障碍的特点不包括()。
2011年我国全部工业增加值188572亿元。规模以上工业增加值增长13.9%。在规模以上工业中,国有及国有控股企业增长9.9%;集体企业增长9.3%,股份制企业增长15.8%,外商及港澳台商投资企业增长10.4%;私营企业增长19.5%。轻工业增长13.
2020年6月1日《北京市野生动物保护管理条例》(简称《条例》)正式施行。下列行为中,违反该《条例》相关规定的是:
根据我国法律规定,下列选项中可以作为法律主体参与法律关系的是
公寓住户设法减少住宅小区物业管理费的努力是不明智的。因为,对于住户来说,物业管理费少交了1元,但为了应付因物业管理服务质量下降而付出的费用很可能是3元、4元甚至更多。以下哪项最可能是上述论证所假设的?
Title:HONESTYTime:40minutesWordlimit:160-200words.YourcompositionshouldbebasedontheKeyWordsandExpressionsbel
最新回复
(
0
)