首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
确定常数λ,使在右半平面(x>0)上的向量A(x,y)=2xy(x4+y2)λi—x2(x4+y2)λj为某二元函数u(x,y)的梯度,并求u(x,y).
确定常数λ,使在右半平面(x>0)上的向量A(x,y)=2xy(x4+y2)λi—x2(x4+y2)λj为某二元函数u(x,y)的梯度,并求u(x,y).
admin
2019-04-08
73
问题
确定常数λ,使在右半平面(x>0)上的向量A(x,y)=2xy(x
4
+y
2
)
λ
i—x
2
(x
4
+y
2
)
λ
j为某二元函数u(x,y)的梯度,并求u(x,y).
选项
答案
确定常数λ.由梯度定义有gradu(x,y)=[*]=A(x,y)=Pi+Qj,因而 [*] 而 [*]=-2x(x
4
+y
2
)
λ
-4λx
5
(x
4
+y
2
)
λ-1
, [*]=2x(x
4
+y
2
)
λ
+4λxy
2
(x
4
+y
2
)
λ-1
, 因当x>0时,x
4
+y
2
≠0,故无论常数λ取何值,都有u’’
xy
与u’’
xy
连续,从而[*],即[*].由此得到(x
4
+y
2
)(λ+1)=0,故λ=一1. 反之,若λ=一1,则P(x,y)=2xy(x
4
+x
2
)
-1
,Q(x,y)=一x
2
(x
4
+y
2
)
-1
,满足[*],(x,y)≠(0,0),从而在右半平面这个单连通区域D内Pdx+Qdy是某个函数u(z,y)的全微分,于是有[*],即gradu(x,y)=Pi+Qj=A(x,y).这就证明了当λ=一1时A(x,y)为某个二元函数u(x,y)的梯度. 因在单连通区域D内有[*],故存在u(x,y)使Pdx+Qdy=du.曲线积分∫
L
Pdx+Qdy在右半平面D内与路径无关.因而在右半平面(x>0)上任取一特殊点,例如取点(1,0),作为积分路径起点,则 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/QJ04777K
0
考研数学一
相关试题推荐
(2009年)设an为曲线y=xn与y=xn+1(n=1,2,…)所围成区域的面积,记求S1与S2的值。
(2002年)(I)验证函数满足微分方程y"+y′+y=ex:(Ⅱ)利用(I)的结果求幂级数的和函数。
(2012年)
设A,B,C均为n阶矩阵,若AB=C,且B可逆,则()
设矩阵其行列式|A|=-1,又A的伴随矩阵A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1)T,求a,b,c和λ0的值。
设直线y=kx与曲线所围平面图形为D1,它们与直线x=1围成平面图形为D2.(1)求k,使得D1与D2分别绕x轴旋转一周成旋转体体积V1与V2之和最小,并求最小值;(2)求此时的D1+D2.
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点,若极径OM0,OM与曲线L所围成的曲边扇形面积值等于L上M0,M两点间弧长值的一半,求曲线L的方程.
设点A(1,0,0),B(0,1,1),线段AB绕z轴一周所得旋转曲面为S.求曲面S界于平面z=0与z=1之间的体积.
[2012年]求幂级数的收敛域及和函数.
(2012年试题,三)求幂级数的收敛域及和函数.
随机试题
A.麻醉药品B.一类精神药品C.二类精神药品D.处方药E.非处方药专用处方保存三年备查的药品是
(2010年)百年一遇的洪水,是指()。
协调处理现场周围的保护工作是( )的义务。
计算单位工程的工程量应按( )计算。
秦先生目前在某咨询公司任项目经理,月薪税前1.5万人民币,按15%缴纳三险一金,年底约有税前15万元的奖金收入。秦太太是幼儿园教师,工作稳定,每月收入税后3500元。二人目前均为32岁,2005年结婚,2005年6月首付15万元,采用等额本息方式贷款购买了
导游人员在对儿童的接待中,下列说法正确的是()
包装策略主要包括()
税收是国家普遍采用的取得财政收人的形式,它与其他财政收入形式相比,具有()等形式特征。
Hisdogwas______byatrucklastnightanddiedimmediately.
Internetpiracyisdefinedas______.SalesofpiratedsoftwareovertheInternethasbeenencouragedbyallofthefollowingEX
最新回复
(
0
)