首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (1)证明当n≥3时,有An=An-2+A2-E; (2)求A100.
设 (1)证明当n≥3时,有An=An-2+A2-E; (2)求A100.
admin
2018-09-20
47
问题
设
(1)证明当n≥3时,有A
n
=A
n-2
+A
2
-E;
(2)求A
100
.
选项
答案
(1)用归纳法. 当n=3时,因[*]验证得A
3
=A+A
2
一E,故所证等式成立; 假设n=k-1(n≥3)时,A
k-1
=A
k-3
+A
2
一E成立,则 A
k
=A.A
k-1
=A(A
k-3
+A
2
一E)=A
k-2
+A
3
-A =A
k-2
+(A+A
2
-E)一A=A
k-2
+A
2
一E, 即n=k时成立.故A
n
=A
n-2
+A
2
一E对任意n(n≥3)成立. (2)由上述递推关系可得 A
100
=A
98
+A
2
—E=(A
96
+A
2
-E)+A
2
一E =A
96
+2(A
2
-E)=…=A
2
+49(A
2
-E) =[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/QRW4777K
0
考研数学三
相关试题推荐
设f(x)的定义域为[1,+∞),f(x)在[1,+∞)可积,并且满足方程讨论f(x)的单调性.
已知f(x)=ax3+x2+2在x=0和x=-1处取得极值,求f(x)的单调区间、极值点和拐点.
下列矩阵中不能相似对角化的是
设α0是A属于特征值λ0的特征向量,则α0不一定是其特征向量的矩阵是
证明:当x>1时,0<lnx+
设二次型f(x1,x2,x3)=ax12+ax22+(a-1)x32+2x1x3-2x2x3,(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
已知A2=0,A≠0,证明A不能相似对角化.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T都是A属于λ=6的特征向量,求矩阵A.
已知A暑3阶不可可矩阵,-1和2是A的特征值.B=A2-A-2E,求B的特征值,并问B能否相似对角化,并说明理由.
随机试题
(2014年)弱式有效市场假说认为,市场价格已充分反映出所有过去历史的证券价格信息。下列说法中,属于弱式有效市场所反映出的信息是()。
________在营销技术的发展中,这是企业经营思想的一次革命,其意义可与西方工业革命相提并论。
喉腔侧壁有上下两对矢状位的黏膜皱襞,上方称________,下方称________。
肾综合征出血热少尿期忌用的抗生素是
上题所述病例宜辨证
改革开放以来,我国司法机关始终围绕党的中心工作积极开展司法审判活动,特别是近年来,各级司法机关自觉服务于“保增长、保民生、保稳定”的工作大局,成效显著。关于法治服务于大局,下列哪一说法是不准确的?
清算组在公司清算期间可以行使( )职权。
影响个人劳动力供给意愿的因素有()。
甲委托乙前往丙厂采购男装,乙觉得丙生产的女装市场看好,便自作主张以甲的名义向丙订购。丙未问乙的代理权限,便与之订立了买卖合同。对此,下列说法是正确的是()。
ROM是指()。
最新回复
(
0
)