首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导.试证明: 若再添设f(x)不是一次式也不为常函数的条件,则至少存在一点ξ∈(a,b)使
设f(x)在[a,b]上连续,在(a,b)内可导.试证明: 若再添设f(x)不是一次式也不为常函数的条件,则至少存在一点ξ∈(a,b)使
admin
2018-08-22
39
问题
设f(x)在[a,b]上连续,在(a,b)内可导.试证明:
若再添设f(x)不是一次式也不为常函数的条件,则至少存在一点ξ∈(a,b)使
选项
答案
作φ(x)如上,并且不妨设f(b)一f(a)≥0.易知φ(a)=φ(b)=0,因f(x)不是一次式也不为常函数,故至少存在一点x
1
∈(a,b)使 [*] 或至少存在一点x
2
∈(a,b)使 [*] 若为前者,在区间[a,x
1
]上对φ(x)用拉格朗日中值定理,存在ξ∈(a,x
1
)[*](a,b),使 [*] 即 [*] 从而知存在ξ
1
∈(a,b)使 [*] 若为后者,在区间[x
2
,b]上对φ(x)用拉格朗日中值定理,存在ξ
2
∈(x
2
,b)[*](a,6),使 [*] 不论哪种情形皆有[*]若f(b)一f(a)<0,证明类似.
解析
转载请注明原文地址:https://kaotiyun.com/show/QUj4777K
0
考研数学二
相关试题推荐
设A是三阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是ξ1=[2,2,一1]T,ξ2=[一1,2,2]T,ξ3=[2,一1,2]T.又β=[1,2,3]T,计算:(1)Anξ1;(2)Anβ.
求曲线的斜渐近线.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.(1)证明:β,Aβ,A2β线性无关;(2)若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
设f(x)在[a,b]上连续且严格单调增加,证明:(a+b)∫abf(x)dx<2∫abxf(x)bx.
f(x)在[0,1]上有连续导数,且f(0)=0,证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
设函数f(x)在[一2,2]上二阶可导,且|f(x)|≤1,又f2(0)+[f’(0)]2=4.试证:在(一2,2)内至少存在一点ξ,使得f(ξ)+f"(ξ)=0.
证明:区间(a,b)内单调函数f(x)若有间断点,则它必为第一类间断点.
[*]令x=rsinθ,y=rcosθ,则原式=∫01dr∫02π(r2sin2θ+r2cos2θ).rdθ=∫01r3dr∫02πdθ=
设f(x)在区间[a,b]上连续,且f(x)>0,则函数在(a,b)内的零点个数为()
设A是三阶实对称矩阵,存在可逆矩阵P=,使得P-1AP=,又α=且A*=μα.求常数a,b的值及μ.
随机试题
霍乱弧菌经人工培养传代后,显徽镜下观察是
患者,心中空虚,惕惕而动,面色苍白,胸闷气短,形寒肢冷,舌质淡白,脉象虚弱。选方为
《中华人民共和国水土保持法》规定,国家加强水土流失重点预防区和重点治理区的坡耕地改梯田、淤地坝等水土保持重点工程建设,加大()力度。
申请建立保税仓库,除了要求具有专门储存、堆放进口货物的安全设施,建立健全的仓库管理制度和详细的仓库账册、配备经海关培训的专职管理人员外,保税仓库的经理人还应具备向海关缴纳税款的能力。()
教师的期望或明或暗地被传送给学生,学生会按照教师所期望的方向来塑造自己的行为,这称作()。
马克思主义政治经济学的研究对象是()。
某公司董事会根据年龄确定高管团队为三级架构,年龄越大级别越高。最上一级为CEO,4名副总裁直接向CEO汇报,每位副总裁领导一个部门,且手节有3名总监。若CEO今年50岁,且高管团队各人年龄为互不相同的连续自然数。则部门间高管的平均年龄之差最大为多少?
下列矩阵不能与对角矩阵相似的是()
计算机网络中对等实体间通信时必须遵循约定的标准协议。不同的协议有不同的功能,如:(61)用于网络管理;(62)用于移动电话无线上网;(63)可用于家庭拨号上网;(64)是—种面向比特的数据链路通信规则;(65)是一种路由选择协议。
Fordays,Beijinghasbeentrappedunderablanketofyellow-browndustthattheU.S.Embassyairmonitorclassifies,initsho
最新回复
(
0
)