首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[20l5年] 已知函数f(x)在区间[a,+∞]上具有2阶导数,f(a)=0,f′(x)>0,f″(0)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明 a<x0<b.
[20l5年] 已知函数f(x)在区间[a,+∞]上具有2阶导数,f(a)=0,f′(x)>0,f″(0)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明 a<x0<b.
admin
2019-04-05
92
问题
[20l5年] 已知函数f(x)在区间[a,+∞]上具有2阶导数,f(a)=0,f′(x)>0,f″(0)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x
0
,0),证明
a<x
0
<b.
选项
答案
利用导数性质及拉格朗El中值定理证之. 为方便计,假设y=f(x)满足f′(x)>0,f″(x)>0且f(a)=0.y=f(x)在点(b,f(b))处的切线方程为y一f(b)=f′(b)(x-b),该切线与x轴的交点为 (x
0
,0)=(b一[*],0). 下证x
0
=b一[*]<b.因f′(x)>0,故f′(b)>0,且由f(x)单调增加,有f(b)>f(a)=0,从而[*]>0,故b一[*]<b,即x
0
<b. 下证x
0
>a,即证b一[*]>a,亦即证明(b一a)f′(b)>f(b).由左端易想到使用拉格朗日中值定理:因f(x)可导,由该定理得到 f(b)—f(a)=f′(ξ)(b—a),ξ∈(a,b). 因f(a)=0,即f(b)=f′(ξ)(b一a).又因f″(x)>0,f′(x)单调增加,故f′(ξ)<f′(b),所以f(b)=f′(ξ)(b一a)<f′(b)(b一a),所以b—a>[*],即x
0
=a一[*]>a. 综上得到a<x
0
<b.
解析
转载请注明原文地址:https://kaotiyun.com/show/gPV4777K
0
考研数学二
相关试题推荐
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=
在上半平面求一条向上凹的曲线,其上任一点P(x,y)处的曲率等于此曲线在该点的法线段PQ长度的倒数(Q是法线与x轴的交点),且曲线在点(1,1)处的切线与x轴平行.
求极限,其中n为给定的自然数.
计算下列反常积分:(1)∫-∞+∞(|x|+x)e-|x|dx;
求下列函数的带皮亚诺余项至括号内所示阶数的麦克劳林公式:(Ⅰ)f(x)=excosx(x3);(Ⅱ)f(x)=(x3).(Ⅲ)f(x)=,其中a>0(x2).
把二重积分f(x,y)dxdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
在半径为a的半球外作一外切圆锥体,要使圆锥体体积最小,问高度及底半径应是多少?
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
计算二重积分,其中D={(x,y)|0≤x≤1,0≤y≤1}。
①设α1,α2,…,αs和β1,β2,…βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).③设A和B是两个
随机试题
解释性报道最早出现在20世纪30年代的
1956年4月和5月,毛泽东先后在中央政治局扩大会议和最高国务会议上,作了《论十大关系》的报告,这是党探索中国社会主义建设道路的良好开端。《论十大关系》提出()
定喘汤适用的病证是
用于牙周植骨术的骨材料是()
下列关于牛胰岛素的叙述,不正确的是
A股份有限公司于2004年6月15日,发现2002年9月20日误将购入600000元固定资产支出计入管理费用,对利润影响较大。该企业编制2004年6月份会计报表时应()。
某公司2017年3月15日购入M公司发行在外的普通股股票作为交易性金融资产核算。购买时支付价款1200万元(其中包括已宣告但尚未发放的现金股利100万元,交易费用20万元),至2017年6月30日,该股票的公允价值为1200万元。2017年8月19日该公司
自习课上,学生们正专心致志地做练习题,突然窗外传来了一阵吵闹声,这时学生们纷纷把视线转向窗外一探究竟。学生们的这种注意属于()。
A是n阶可逆矩阵,A*是A的伴随矩阵,则(A*)*=[].
把用户状态设置为忙碌。
最新回复
(
0
)