首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[20l5年] 已知函数f(x)在区间[a,+∞]上具有2阶导数,f(a)=0,f′(x)>0,f″(0)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明 a<x0<b.
[20l5年] 已知函数f(x)在区间[a,+∞]上具有2阶导数,f(a)=0,f′(x)>0,f″(0)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明 a<x0<b.
admin
2019-04-05
113
问题
[20l5年] 已知函数f(x)在区间[a,+∞]上具有2阶导数,f(a)=0,f′(x)>0,f″(0)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x
0
,0),证明
a<x
0
<b.
选项
答案
利用导数性质及拉格朗El中值定理证之. 为方便计,假设y=f(x)满足f′(x)>0,f″(x)>0且f(a)=0.y=f(x)在点(b,f(b))处的切线方程为y一f(b)=f′(b)(x-b),该切线与x轴的交点为 (x
0
,0)=(b一[*],0). 下证x
0
=b一[*]<b.因f′(x)>0,故f′(b)>0,且由f(x)单调增加,有f(b)>f(a)=0,从而[*]>0,故b一[*]<b,即x
0
<b. 下证x
0
>a,即证b一[*]>a,亦即证明(b一a)f′(b)>f(b).由左端易想到使用拉格朗日中值定理:因f(x)可导,由该定理得到 f(b)—f(a)=f′(ξ)(b—a),ξ∈(a,b). 因f(a)=0,即f(b)=f′(ξ)(b一a).又因f″(x)>0,f′(x)单调增加,故f′(ξ)<f′(b),所以f(b)=f′(ξ)(b一a)<f′(b)(b一a),所以b—a>[*],即x
0
=a一[*]>a. 综上得到a<x
0
<b.
解析
转载请注明原文地址:https://kaotiyun.com/show/gPV4777K
0
考研数学二
相关试题推荐
设函数f(u)有连续的一阶导数,f(2)=1,且函数z=满足,x>0,y>0,①求z的表达式.
求微分方程=y4的通解.
求常数a,b使得f(x)=在x=0处可导.
计算二重积分,其中D是由x轴,y轴与曲线所围成的区域,a>0,b>0。
设f(x)在[0,1]连续,且对任意x,y∈[0,1]均有|f(x)-f(y)|≤M|x-y|,M为正的常数,求证:
证明n阶行列式
设常数k>0,函数内零点个数为()
(2004年)设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*是A的伴随矩阵,E是单位矩阵,则|B|=_______.
[2005年]设y=(1+sinx)x,则dy∣x=π=_________.
[2009年]设求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
随机试题
下列哪项不是机会致病菌引起医院感染率上升的原因
痢疾的病位在
工程的概、预算主要发生在()。
督察长连续3次考试成绩不及格的,中国证监会可免除其职务。()
(2014年真题)期刊的栏目设计应该()。
简述当代儿童发展观的基本内容。
决定警察必要性的直接因素是()。
请用不超过200字的篇幅,概括出给定材料所反映的主要问题。要求:全面,有条理,有层次。从政府制定政策的角度,提出解决给定资料所反映问题的对策建议。要求:有针对性,有条理,切实可行。字数不超过350字。
“渐”的作用,就是用每步相差极微极缓的方法来隐蔽时间的过去与事物的变迁的痕迹,使人误认其为恒久不变。这真是造物主骗人的一大诡计!这有一个比喻的故事:某农夫每天朝晨抱了犊而跳过一沟,到田里去工作,夕暮又抱了它跳过沟回家。每日如此,未尝间断。过了一年,犊已渐大
要在Web浏览器中查看某一电子商务公司的主页,应知道()。
最新回复
(
0
)