首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一l,1)T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一l,1)T是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
admin
2018-08-03
24
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,且α
1
=(1,一l,1)
T
是A的属于λ
1
的一个特征向量.记B=A
5
一4A
3
+E,其中E为3阶单位矩阵.
验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
选项
答案
记矩阵A的属于特征值λ
i
的特征向量为α
i
(i=1,2,3),由特征值的定义与性质,有 A
k
α
i
=λ
i
k
α
i
(i=1,2,3,k=1,2,…),于是有 Bα
1
=(A
5
一4A
3
+E)α
1
=(λ
1
5
一4λ
1
3
+1)α
1
=一2α
1
因α
1
≠0,故由定义知一2为B的一个特征值且α
1
为对应的一个特征向量.类似可得 Bα
2
=(λ
2
5
一4λ
2
3
+1)α
2
=α
2
Bα
3
=(λ
3
5
一4λ
3
3
+1)α
3
=α
3
因为A的全部特征值为λ
1
,λ
2
,λ
3
,所以B的全部特征值为λ
i
5
一4λ
i
5
+1(i=1,2,3),即B的全部特征值为一2.1,1. 因一2为B的单特征值,故B的属于特征值一2的全部特征向量为k
1
α
1
,其中是k
1
是不为零的任意常数. 设x=(x
1
,x
2
,x
3
)
T
为B的属于特征值1的任一特征向量.因为A是实对称矩阵,所以B也是实对称矩阵.因为实对称矩阵属于不同特征值的特征向量正交,所以有(x
1
,x
2
,x
3
)α
1
=0,即 x
1
—x
2
+x
3
=0 解得该方程组的基础解系为 ξ
2
=(1.1,0)
T
, ξ
3
=(一1,0,1)
T
故B的属于特征值1的全部特征向量为k
2
ξ
2
+k
3
ξ
3
,其中k
2
,k
3
为不全为零的任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Qug4777K
0
考研数学一
相关试题推荐
设f(x)二阶连续可导,且曲线积分∫[3f’(x)一2f(x)+xe2x]ydx+f’(x)dy与路径无关,求f(x).
设总体X~N(0,1),(X1,X2,…,Xm,Xm+1,…,Xm+n)为来自总体X的简单随机样本.求统计量所服从的分布.
设X~N(1,σ2),Y~N(2,σ2)为两个相互独立的总体,X1,X2,…,Xn与Y1,Y2,…,Yn分别为来自两个总体的简单样本,S12=服从___________分布.
设矩薛A满足(2E一C-1B)AT=C-1,且B=,求矩阵A.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设A为n阶矩阵,若Ak—1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak—1α线性无关.
设α1,α2,…,αn为n个n维列向量,证明:α1,α2,…,αn线性无关的充分必要条件是
已知y1*=xex+e2x,y2*=xex+e-x,y3*=xex+e2x-e-x是某二阶线性常系数非齐次方程的三个特解,试求其通解及该微分方程.
计算行列式|A|=之值.
设A是n阶矩阵,证明方程组Ax=b对任何b都有解的充分必要条件是|A|≠0.
随机试题
下列属于慢性苯中毒多见的造血系统损害是
证券投资基金的创立和运行涉及()。
立井井筒施工混凝土的分层浇筑厚度一般为()。
磁信号转化成数字信号时采用()的采集模式
儿童情绪的内隐性出现在()。
简述心理健康的基本标准。
从警察起源上看,()。
Posner在1980年使用的空间提示任务(spatialcueingtask)是用来研究
早期宇宙中含有最轻的元素:氢和氦。像碳这样比较重的元素只有在恒星的核反应中才能形成并且在恒星爆炸时扩散。最近发现的一个星云中含有几十亿年前形成的碳,当时宇宙的年龄不超过15亿年。以上陈述如果为真,以下哪项必定为真?
编写如下程序:PrivateSubCommand1_Click()Dima(3,3)AsIntegerDimiAsInteger,jAsIntegerFori=1To3Forj=
最新回复
(
0
)