首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
验证a1=(1,一1,0)T,a2=(2,1,3)T,a3=(3,1,2)T为R3的一个基,并把v1=(5,0,7)T,v2=(一9,一8,一13)T用这个基线性表示.
验证a1=(1,一1,0)T,a2=(2,1,3)T,a3=(3,1,2)T为R3的一个基,并把v1=(5,0,7)T,v2=(一9,一8,一13)T用这个基线性表示.
admin
2021-02-25
23
问题
验证a
1
=(1,一1,0)
T
,a
2
=(2,1,3)
T
,a
3
=(3,1,2)
T
为R
3
的一个基,并把v
1
=(5,0,7)
T
,v
2
=(一9,一8,一13)
T
用这个基线性表示.
选项
答案
令A=(a
1
,a
2
,a
3
),V=(v
1
,v
2
),对矩阵(A,V)施以初等行变换,有 [*] 所以a
1
,a
2
,a
3
线性无关,是R
3
的一个基.且v
1
=2a
1
+3a
2
一a
3
,v
2
=3a
1
一3a
2
—2a
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/R484777K
0
考研数学二
相关试题推荐
A是2阶矩阵,2维列向量α1,α2线性无关,Aα1=α1+α2,Aα2=4α1+α2.求A的特征值和|A|.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求Ax=0的一个基础解系.
设f(x,y)在单位圆x3+y2≤1上有连续的偏导数,且在边界上取值为零,f(0,0)=2004,试求极限
某车间有同型号机床200部,每部开动的概率为0.7,假定各机床开关是相互独立的,开动时每部要消耗电能15个单位,问电厂最少要供应该车间多少单位电能,才能以95%的概率保证不致因供电不足而影响生产?
已知,设A=αTβ,其中αT是α的转置,则An=_____________.
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
已知齐次线性方程组有非零解,则a=________。
设三阶方阵A与B相似,且|2E+A|=0。已知λ1=1,λ2=一1是方阵B的两个特征值,则|A+2AB|=________。
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,-3)T,则α2由α1,α3,α4表示的表达式为_______.
随机试题
A.荆芥、防风、牛蒡B.荆芥、白芷、牛蒡C.荆芥、薄荷、秦艽D.荆芥、白芷、羌活E.防风、薄荷、升麻消风散的组成药物中含有
女,43岁,心悸怕热,手颤乏力两年,大便不成形,每日3~4次,体重下降10公斤,查体,脉搏95次/分,血压125/95mmHg,皮肤潮湿,双手细颤,双眼突出,甲状腺弥漫Ⅱ肿大,可闻及血管杂音,心率104次/分,律不齐,心音强弱不等,腹平软,肝脾
组织是管理的一项重要职能,其组织含义包括()。
制作风险清单是商业银行识别与分析风险最基本、最常用的方法。()
生产、销售有毒、有害食品是指在生产、销售的食品中掺入有毒、有害的非食品原料的,或者销售明知掺有有毒、有害的非食品原料的食品的行为。根据上述定义,下列构成生产、销售有毒、有害食品罪的是()。
英国经济学家哥尔柏曾经把征税的艺术概括为“拔最多的鹅毛,听最少的鹅叫”。这句话的意思说明,制定税收政策必须坚持()。
一般资料:求助者,男性,30岁,秘书。案例介绍:以下是心理咨询中的一段对话。心理咨询师:上次咨询你谈到现在最苦恼的是总担心自己写错东西,尽管你知道自己不会写错,但总是控制不了自己的这种想法,不断地写,叉不断地检查,是这样吗?求
在社区建设的主要任务中,()是社区建设重点发展的项目,具有广阔的前景。
下列关于计算机病毒的描述正确的是()。
微机硬件系统中最核心的部件是
最新回复
(
0
)