首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是n阶可逆矩阵,且A~B,则 ①A-1~B-1; ②AT~BT; ③A*~B*; ④AB~BA. 其中正确的个数是 ( )
设A,B是n阶可逆矩阵,且A~B,则 ①A-1~B-1; ②AT~BT; ③A*~B*; ④AB~BA. 其中正确的个数是 ( )
admin
2019-07-28
45
问题
设A,B是n阶可逆矩阵,且A~B,则
①A
-1
~B
-1
;
②A
T
~B
T
;
③A
*
~B
*
;
④AB~BA.
其中正确的个数是 ( )
选项
A、1
B、2
C、3
D、4
答案
D
解析
由A~B,有|A|=|B|,且存在可逆矩阵P,使
P
-1
AP=B, (*)
(*)式两边求逆得
P
-1
A
-1
P=B
-1
, (**)
从而A
-1
~B
-1
(①成立).
(*)式两边转置,得P
T
A
T
(P
-1
)
T
=B
T
,记(P
-1
)
T
=Q,P
T
=Q
-1
,即Q
-1
A
T
Q=B
T
.
从而A
T
~B
T
(②成立).
(**)式两边乘|A|,P
-1
|A|A
-1
P=P
-1
A
*
P=|B|B
-1
=B
*
,从而A
*
~B
*
(③成立).
因A可逆,故BA=EBA==A
-1
ABA=A
-1
(AB)A,即AB~BA(④成立).
故应选(D).
转载请注明原文地址:https://kaotiyun.com/show/WXN4777K
0
考研数学二
相关试题推荐
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|且A,B都可相似对角化,证明:A~B.(2)设,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
设α1=,α2=,α3=,α4=,则α1,α2,α3,α4的一个极大线性无关组为______,其余的向量用极大线性无关组表示为________.
=_______.
求
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设直线y=ax与抛物线y=x2所围成的图形面积为S1,它们与直线x=1所围成的图形面积为S2,且a<1.(1)确定a,使S1+S2达到最小,并求出最小值;(2)求该最小值所对应的平面图形绕x轴旋转一周所得旋转体的体积.
设f(x)在x=2处连续,且,则曲线y=f(x)在(2,f(2))处的切线方程为__________.
曲线x=a(cost+tsint),y=a(sint-tcost)(0≤t≤2π)的长度L=_________.
(90年)已知函数f(x)具有任意阶导数,且f’(x)=[f(x)]2.则当n为大于2的正整数时,f(x)的n阶导数f(n)(x)是
随机试题
下列哪项是隐私权的主体()
患者,女,22岁。头晕目眩,少气倦怠,腹部有坠胀感,脱肛,舌淡苔白,脉弱。其辨证为
建筑物散水的作用是哪一项?[2001-071]
在某建设单位与供应商之间的建筑材料采购合同中约定,工程竣工验收后1个月内支付材料款,期间,建设单位经营状况严重恶化,供应商逐暂停供应建筑材料,要求先付款,否则终止供货,则供应商的行为属于行使()
某政府机关实施“流程再造”改革,根据工作流程重新组织业务活动,并构建了统一的业务平台,极大地提高了工作效率和公众满意度。下列关于“流程再造”作用的说法,正确的有()。
()对于团聚相当于蜡烛对于()
设X,Y为两个随机变量,且P(X≥0,Y≥0)=,P(X≥0)=P(Y≥0)=,则P(max{X,Y}≥0)=_______。
若服务器系统年停机时间为10分钟,那么系统可用性至少达到()。
以下合法的VB变量名是( )。
Wheredoestheconversationmostprobablytakeplace?
最新回复
(
0
)