首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
admin
2020-03-10
45
问题
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,P
T
AP为正定矩阵.
选项
答案
首先A
T
=A,因为(P
T
AP)
T
=P
T
A
T
(P
T
)
T
—P
T
AP,所以P
T
AP为对称矩阵,对任意的X≠0,X
T
(P
T
AP)X=(PX)
T
A(PX),令PX=α,因为P可逆且X≠0,所以α≠0,又因为A为正定矩阵,所以α
T
Aα>0,即X
T
(P
T
AP)X>0,故X
T
(P
T
AP)X为正定二次型,于是P
T
AP为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/R5D4777K
0
考研数学三
相关试题推荐
设y=y(x)是二阶常系数非齐次线性微分方程y’’+Py’+Qy=3e2x满足初始条件y(0)=y’(0)=0的特解,则极限=()
幂级数的和函数为_____________________。
若x→0时与xsinx是等价无穷小量,试求常数a。
设向量组(I):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为(b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(I)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设方程组与方程(2)x1+2x2+x3=a—1有公共解,求a的值及所有公共解。
设某班车起点站上客人数X服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0
已知随机变量X,Y的概率分布分别为P{X=一1}=,P{X=0}=,P{X=1}=,P{Y=0}=,P{Y=1}=,P{Y=2}=,并且P{X+Y=1}=1,求:(X,Y)的联合分布;
微分方程满足初始条件y(1)=1的特解是y=_________。
求下列方程满足给定条件的特解:yt+1+4yt=17cost,y0=1.
随机试题
简述简单蒸气压缩制冷循环的基本构成。
___________是建立组织机构的首要环节或基本途径。
现代政党
简述计算机的组成部件。
镇静催眠药按化学结构可分为
下列因素中,影响企业生产能力的有()。
下列被誉为“国酒”“外交酒”的是()。
国共两党与各革命阶级第一次合作的政治基础是________。
第二代计算机所使用的主要逻辑器件为()。
•Readthearticlebelowaboutproblemsindoinginternationaltrade.•Foreachquestion23-28ontheoppositepage,choosethec
最新回复
(
0
)