首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
admin
2020-03-10
46
问题
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,P
T
AP为正定矩阵.
选项
答案
首先A
T
=A,因为(P
T
AP)
T
=P
T
A
T
(P
T
)
T
—P
T
AP,所以P
T
AP为对称矩阵,对任意的X≠0,X
T
(P
T
AP)X=(PX)
T
A(PX),令PX=α,因为P可逆且X≠0,所以α≠0,又因为A为正定矩阵,所以α
T
Aα>0,即X
T
(P
T
AP)X>0,故X
T
(P
T
AP)X为正定二次型,于是P
T
AP为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/R5D4777K
0
考研数学三
相关试题推荐
现有四个向量组①(1,2,3)T,(3,一l,5)T,(0,4,一2)T,(1,3,0)T;②(a,l,b,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,l,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
设α,β均为三维列向量,β是βT的转置矩阵,如果αβT=,则αTβ=___________。
设向量组α1=(n,0,10)T,α2=(一2,1,5)T,α3=(一1,1,4)T,β=(1,b,c)T,试问:当a,b,c满足什么条件时:(I)β可由α1,α2,α3线性表出,且表示唯一;(Ⅱ)β不可由α1,α2,α3线性表出;(Ⅲ)β可由α1,
设函数z=z(x,y)由方程z=e2x-3z+2y确定,则=__________。
将三封信随机地投入编号为1,2,3,4的四个邮筒。记X为1号邮筒内信的数目,Y为有信的邮筒数目。求:(X,Y)的联合概率分布;
微分方程满足初始条件y(1)=1的特解是y=_________。
已知矩阵A=有特征值λ=5,求a的值;当a>0时,求正交矩阵Q,使Q-1AQ=Λ。
求下列微分方程的通解或特解:
设f(x,y)与φ(y)均是二次可微函数.若z=f(x,y),其中y=y(x)是由方程x=y+φ(y)所确定,求
判断下列结论是否正确?为什么?若存在x0的一个邻域(x0-δ,x0+δ,使得x∈(x0-δ,x0+δ)时f(x)=g(x),则f(x)与g(x)在x0处有相同的可导性.若可导,则f’(x0)=g’(x0).
随机试题
直接筹资主要有
硬膜外麻醉穿刺操作时不慎刺破硬脊膜,术后最容易出现
男性,40岁。病史2周,发热,皮肤有出血点,骨髓原始细胞>80%,过氧化物酶(++),Auer小体(+)。最可能的诊断是
关于胃的形态描述,错误的是
在开放积极条件下,一个国家国民生产总值由()四部分构成。
我国通过采用国债投资等多种措施推动经济结构调整和产业机构升级,促使我国的经济增长模式逐步由()转变。
谋求世界各国经济共同发展的根本途径是()。
TheAsiantigermomthatAmyChuaportraysinhernewbookmayseemlikejustonemorespeciesinthegenusExtremeParent—the
•Readthearticlebelowaboutsuccessfule-mailnegotiation.•Choosethebestsentencefromtheoppositepagetofilleachofth
Overthepastdecade,significantresearchhasdemonstratedwhatmanyhaveknownforalongtime:womenarecriticaltoeconomic
最新回复
(
0
)