首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2014年)设函数f(x)具有2阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上( )
(2014年)设函数f(x)具有2阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上( )
admin
2018-07-24
25
问题
(2014年)设函数f(x)具有2阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上( )
选项
A、当f’(x)≥0时,f(x)≥g(x)
B、当f’(x)≥0时,f(x)≤g(x)
C、当f’’(x)≥0时,f(x)≥g(x)
D、当f’’(x)≥0时,f(x)≤g(x)
答案
D
解析
令F(x)=f(x)一g(x)=f(x)一f(0)(1一x)一f(1)x,则
F’(x)=f’(x)+f(0)一f(1),F’’(x)=f’’(x).
当f’’(x)≥0时,F’’(x)≥0.则曲线y=F(X)在区间[0,1]上是凹的,又F(0)=F(1)=0,
从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选D.
转载请注明原文地址:https://kaotiyun.com/show/RGW4777K
0
考研数学三
相关试题推荐
设f(x)=slnx,f[φ(x)]=1一x2,则φ(x)=________,定义域为________。
判断级数的敛散性.
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
举例说明函数可导不一定连续可导.
判断下列结论是否正确,并证明你的判断.(Ⅰ)设当n>N时xn<yn,已知极限均存在,则A<B;(Ⅱ)设f(x)在(a,b)有定义,又存在c∈(a,b)使得极限,则f(x)在(a,b)有界;(Ⅲ)若=∞.则存在δ>0.使得当0<|x-a|<δ时有界.
2.e2(π/4一1).对n项乘积先取对数,产生因子1/n,再用定积分定义求之.故原式=2.e2(π/4一1).
设f(x)在(一∞,+∞)内有定义,且对于任意x与y均有f(x+),)=f(x)ey+f(y)ex,又设f’(0)存在且等于a(a≠0),试证明对任意x,f’(x)都存在,并求f(x)。
(1995年)下列广义积分发散的是()
(1995年)设某产品的需求函数为Q=Q(P),收益函数为R=PQ,其中P为产品价格,Q为需求量,(产品的产量),Q(P)是单调减函数.如果当价格为P0,对应产量为Q0时,边际收益,收益对价格的边际效应,需求对价格的弹性为Ep=b>1,求P0和Q0.
随机试题
从固态转变成气态的相变过程称为汽化。
青年发病的成人型糖尿病糖耐量降低的主要机制是()
下列说法中,错误的是
患者,女性,40岁。右颈前区无痛性肿物1年余。鼻腔内偶有少量血液,无发热、咳嗽及消瘦,近来肿物无明显增大,无结核病史。查体:脉率72次/分,血压110/70mmHg,无突眼,右甲状腺触及约1.5cm结节,右颈外侧上区触及一肿大淋巴结,约2.5cm,稍活动,
下列贷款利率状况中,从借款人角度看宜选择长期固定利率贷款的是()。
根据票据法律制度的规定,下列有关汇票背书的表述中,正确的是()。
企业的发展和变化中,涉及多个层次,其中包括()。
瑞士汽车的普及率很高,平均两人就有一辆,对富有的瑞士人来说,买辆豪华的“奔驰”或“林肯”轿车根本不在话下。然而,瑞士公路上行驶的大多数是“本田”、“大众”等普及型轿车,以及一些叫不出名的甲壳虫车。瑞士是“手表王国”,所产的“劳力士”、“雷达”和“欧米茄”等
Thoughnotbiologicallyrelated,friendsareas"related"asfourthcousins,sharingabout1%ofgenes.Thatis【C1】______astudy
Whetherwewantitornotweareallgreedy(1)_____nature.Fromthemomentwearebornandtothelastdayofourlifewe(2)__
最新回复
(
0
)