首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,—1,—3)T,α4=(0,0,3,3)T线性表出。 求α1,α2,α3,α4应满足的条件。
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,—1,—3)T,α4=(0,0,3,3)T线性表出。 求α1,α2,α3,α4应满足的条件。
admin
2019-03-23
50
问题
已知向量β=(α
1
,α
2
,α
3
,α
4
)
T
可以由α
1
=(1,0,0,1)
T
,α
2
=(1,1,0,0)
T
,α
3
=(0,2,—1,—3)
T
,α
4
=(0,0,3,3)
T
线性表出。
求α
1
,α
2
,α
3
,α
4
应满足的条件。
选项
答案
β可由α
1
,α
2
,α
3
,α
4
线性表示,即方程组(1)x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=β有解,对增广矩阵作初等行变换,有 [*] 所以向量β可以由α
1
,α
2
,α
3
,α
4
线性表出的充分必要条件是a
1
—a
2
+a
3
—a
4
=0。
解析
转载请注明原文地址:https://kaotiyun.com/show/RHV4777K
0
考研数学二
相关试题推荐
与α1=(1,-1,0,2)T,α2=(2,3,1,1)T,α3=(0,0,1,2)T都正交的单位向量是________.
设A是n阶非零实矩阵,满足A*=AT.证明|A|>0.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为(Ⅱ)的一个基础解系为η1=(2,-1,a+2,1)T,η2=(-1,2,4,a+8)T.(1)求(Ⅰ)的一个基础解系;(2)a为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求出全部公共非零解
设①a,b取什么值时存在矩阵X,满足AX-CX=B?②求满足AX-CX=B的矩阵X的一般形式.
已知齐次方程组同解,求a,b,c.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
证明:r(A)=r(ATA).
记平面区域D={(x,y)|x|+|y|≤1),计算如下二重积分:(1)其中f(t)为定义在(一∞,+∞)上的连续正值函数,常数a>0,b>0;(2),常数λ>0.
求二元函数z=f(x,y)=x2y(4一x一y)在直线x+y=6,x轴与y轴围成的闭区域D上的最大值与最小值.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
随机试题
设总体X的概率分布为利用来自总体的样本值1,3,2,2,1,3,1,2,可得θ的最大似然估计值为().
霉菌的培养温度是()。
A.药事管理委员会B.药学部门C.药检室D.质量管理组E.临床药学部门由主管院长、药学部门负责人、制剂室负责人、药检室负责人等成员组成的是
某工业建设项目,需进口一批生产设备,CIF价为200万美元,银行财务费费率为0.5%,外贸手续费费率为1.5%,关税税率为22%,增值税税率为17%,美元对人民币汇率为1:6.5,则这批设备应缴纳的增值税为()万元人民币。
关于进度绩效指数SPI的说法,正确的是()。
根据我国现行的交易规则,证券交易所证券交易的开盘价为集合竞价时间内的最后一笔成交价。()
下列关于农村资金互助社的说法正确的有()。
编制绩效考评标准时,无需遵循()
具有自愿性、灵活性、实践性的教育活动是()。
当面对引发焦虑的威胁或问题时,有些人的应对方式是尽可能多地收集信息、寻找解决方案,这叫作()。
最新回复
(
0
)