首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关。当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设4维向量组α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a,3)T,α4=(4,4,4,4+a)T,问a为何值时,α1,α2,α3,α4线性相关。当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
admin
2019-03-23
59
问题
设4维向量组α
1
=(1+a,1,1,1)
T
,α
2
=(2,2+a,2,2)
T
,α
3
=(3,3,3+a,3)
T
,α
4
=(4,4,4,4+a)
T
,问a为何值时,α
1
,α
2
,α
3
,α
4
线性相关。当α
1
,α
2
,α
3
,α
4
线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出。
选项
答案
记A=(α
1
,α
2
,α
3
,α
4
),则 |A|=[*]=(a+10)a
3
, 因此当a=0或a= —10时,|A|=0,即α
1
,α
2
,α
3
,α
4
线性相关。 当a=0时,α
1
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组且α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
。 当a= —10时,对A作初等行变换,即 [*] =(β
1
,β
2
,β
3
,β
4
)。 由于β
2
,β
3
,β
4
是β
1
,β
2
,β
3
,β
4
的一个极大线性无关组且β
1
= —β
2
—β
3
—β
4
,故α
2
,α
3
,α
4
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组且α
1
= —α
2
—α
3
—α
4
。
解析
转载请注明原文地址:https://kaotiyun.com/show/RTV4777K
0
考研数学二
相关试题推荐
求函数y=的单调区间,极值点,凹凸性区间与拐点.
设z=f(x,y)满足)=2x,f(x,1)=0,=sinx,求f(x,y).
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量组,满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3.求作矩阵B,使得A(α1,α2,α3)=(α1,α2,α3)B.
设A是m×n矩阵.证明:r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
证明对于任何m×n实矩阵A,ATA的负惯性指数为0.如果A秩为n,则ATA是正定矩阵.
已知向量组(I):α1,α2,α3;(Ⅱ):α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α4,α5.如果各向量组的秩分别为r(I)=r(II)=3,r(Ⅲ)=4.证明向量组α1,α2,α3,α5-α4的秩为4.
求二阶常系数线性微分方程y"+λy’=2x+1的通解,其中λ为常数.
设A为3阶矩阵,E为3阶单位矩阵,α,β是线性无关的3维列向量,且A的秩r(A)=2,Aα=β,Aβ=α,则|A+3E|为()
设二次型f(χ1,χ2,χ3)=(a-1)χ12+(a-1)χ22+2χ32+2χ1χ2(a>0)的秩为2.(1)求a;(2)用正交变换法化二次型为标准形.
随机试题
社会学形成时期的主要代表有()
省级人民政府卫生行政部门在受理血站执业登记申请后,应当组织有关专家或者委托技术部门对申请单位进行技术审查,审核合格的,予以执业登记,发给卫生部统一样式的何种许可证及其副本
患者男,65岁,慢性左心衰竭4年,今晨与家人争吵后出现呼吸困难,咳粉红色泡沫样痰。入院检查:BP90/60mmHg,R28次/分,端坐位,口唇发绀,两肺闻及湿哕音及哮鸣音。对于该患者的吸氧方式是
依法必须进行招标的工程施工项目,资格后审应当在()进行。[2013年真题]
不需要在会计账簿扉页上的启用表中填列的内容是()。
被称为狭义货币供应量的是()。
现代社会初期,学前教育的主要目标是()
根据下表的统计图回答问题。分析数据,请指出我国城镇人口从哪个时期起将达到总人口的1/3()。
根据以下资料,回答以下题。每生产一把该型号职员椅获得的利润率最高的年份是()
Itwasoncethoughtthatairpollutionaffectedonlytheareaimmediatelyaroundlargecitieswithfactoriesand/orheavyautomo
最新回复
(
0
)