首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次方程组(I) 解都满足方程x1+x2+x3=0,求a和方程组的通解.
已知齐次方程组(I) 解都满足方程x1+x2+x3=0,求a和方程组的通解.
admin
2017-10-21
47
问题
已知齐次方程组(I)
解都满足方程x
1
+x
2
+x
3
=0,求a和方程组的通解.
选项
答案
求出(I)的解,代入x
1
+x
2
+x
3
=0,决定a. 用矩阵消元法,设系数矩阵为A, [*] 当a=0时,(I)和方程x
1
+x
2
+x
4
=0同解,以x
2
,x
3
,x
4
为自由未知量求出一个基础解系η
1
=(一1,1,0,0)
T
,η
2
=(0,0,1,0)
T
,η
3
=(一1,0,0,1)
T
. 其中η
2
,η
3
都不是x
1
+x
2
+x
3
=0,的解,因此a=0不合要求. 当a≠0时,继续对B进行初等行变换 [*] 以x
4
为自由未知量,得基础解系[*]代入x
1
+x
2
+x
3
=0, [*] 求得a=1/2.即当a=1/2时,η适合x
1
+x
2
+x
3
=0,从而(I)的解都满足x
1
+x
2
+x
3
=0.当a≠1/2时,η不满足x
1
+x
2
+x
3
=0. 得a=1/2为所求.此时,方程组的通解为c(一1/2,一1/2,1,1)
T
,c可取任何常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/RdH4777K
0
考研数学三
相关试题推荐
设向量组α1,α2,α3,α4线性无关,则向量组().
设y=f(x)为区间[0,1]上的非负连续函数.(1)证明存在c∈(0,1).使得在区间[0,f]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;(2)设f(x)在(0,1)内可导,且,证明(1)中的
设f(x)在区间[a,b]上二阶连续可导,证明:存在ξ∈(a,b),使得
设u=f(z),其中z是由z=y+xφ(z)确定的x,y的函数,其中f(z)与φ(z)为可微函数.证明:.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=.(1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;(2)二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
用配方法化二次型f(x1,x2,x3)=x12+2x1x2+2x1x3—4x32为标准形.
设A为n阶非零矩阵,且存在自然数k,使得Ak=0.证明:A不可以对角化.
判断级数的敛散性.
设(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e—x,则该微分方程为().
随机试题
呋塞米可引起
某人向银行贷款30000元,年利率7%,按单利计算,第4年末应向银行偿还多少元()
事后评审也称()
中国共产党领导农民实行土地改革的第一次尝试的标志性文件是【】
关于共同犯罪,下列哪一说法是正确的?()
下列关于CM模式与Partnering模式说法不正确的是()。
根据启闭机结构形式分类,型号“QP一□×□一□/□”表示的是()启闭机。
《中华人民共和国教师法》确立了教育优先发展的战略地位。()
酸雨是______全球性环境污染的又一个元凶,它是大气污染后产生的酸性沉降物。因为最早引起人们______的是雨中含有这种沉降物,所以习惯上称为酸雨。填入划横线部分最恰当的一项是()。
Janeishappyandexcited.Sheisgoingtobemarriedtomorrowanditisoneofthe【T1】______ofherlife.Sheandherfamiliesh
最新回复
(
0
)