首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次方程组(I) 解都满足方程x1+x2+x3=0,求a和方程组的通解.
已知齐次方程组(I) 解都满足方程x1+x2+x3=0,求a和方程组的通解.
admin
2017-10-21
75
问题
已知齐次方程组(I)
解都满足方程x
1
+x
2
+x
3
=0,求a和方程组的通解.
选项
答案
求出(I)的解,代入x
1
+x
2
+x
3
=0,决定a. 用矩阵消元法,设系数矩阵为A, [*] 当a=0时,(I)和方程x
1
+x
2
+x
4
=0同解,以x
2
,x
3
,x
4
为自由未知量求出一个基础解系η
1
=(一1,1,0,0)
T
,η
2
=(0,0,1,0)
T
,η
3
=(一1,0,0,1)
T
. 其中η
2
,η
3
都不是x
1
+x
2
+x
3
=0,的解,因此a=0不合要求. 当a≠0时,继续对B进行初等行变换 [*] 以x
4
为自由未知量,得基础解系[*]代入x
1
+x
2
+x
3
=0, [*] 求得a=1/2.即当a=1/2时,η适合x
1
+x
2
+x
3
=0,从而(I)的解都满足x
1
+x
2
+x
3
=0.当a≠1/2时,η不满足x
1
+x
2
+x
3
=0. 得a=1/2为所求.此时,方程组的通解为c(一1/2,一1/2,1,1)
T
,c可取任何常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/RdH4777K
0
考研数学三
相关试题推荐
设向量组(I):α1,α2,…,αs的秩为r,,向量组(Ⅱ):β1,β2,…,βs的秩为r。,且向量组(Ⅱ)可由向量组(I)线性表示,则().
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
设A=有三个线性无关的特征向量,求x,y满足的条件.
设(1)判断X,Y是否独立,说明理由;(2)判断X,Y是否不相关,说明理由;(3)求Z=X+Y的密度.
对二元函数z=f(x,y),下列结论正确的是().
|A|是n阶行列式,其中有一行(或一列)元素全是1.证明:这个行列式的全部代数余子式的和等于该行列式的值.
证明:实对称矩阵A可逆的充分必要条件为存在实矩阵B,使得AB+BTA正定.
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵。(Ⅰ)计算PTDP,其中(Ⅱ)利用(Ⅰ)的结果判断矩阵B—CTA-1C是否为正定矩阵,并证明你的结论。
设A为三阶实对称矩阵,且存在可逆矩阵P=,使得p-1AP=.又A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量为α=[2,5,一1]T.(1)求λ0的值;(2)计算(A*)-1;(3)计算行列式|A*+E|.
已知A,B为三阶矩阵,且有相同的特征值1,2,2,则下列命题:①A,B等价;②A,B相似;③若A,B为实对称矩阵,则A,B合同;④行列式|A一2E|=|2E—A|中;命题成立的有().
随机试题
检查齿轮齿侧间隙,可使用压熔丝检验法。()
对比、归纳美国、欧洲、日本的咨询业特色。
患者,男,5岁,直肠Ⅱ度脱垂。治疗应首选()
1岁婴儿,面色苍黄,毛发稀疏,易怒少哭。查体:体温正常,神清,不会扶站,四肢抖动,踝阵挛,巴氏征(+)。该患婴的诊断可能是
某施工单位承建的某污水处理厂工程项目已批准。该工程建设规模为日处理能力41.5万m3二级处理,总造价约为2.9亿元,其中土建工程约为1.8亿元。工程资金来源为:35%自有资金、65%银行贷款。现邀请合格的潜在的土建工程施工投标人参加本工程的投标。
某大型水电站工地,施工单位A在重力坝浇筑过程中,管理人员只在作业现场的危险区悬挂了警示牌,夜间施工时,却发生了高空坠落死亡3人的事故。工程建设期间,还时常发生当地群众到建设管理单位及施工工地大量聚集事件。当工程某隐蔽部位的一道工序施工结束,在未通知监理人员
关于设定行政许可的法律规范,下列哪种说法是错误的?()
数据库管理系统为三级模式结构提供了两层映像机制,其中模式/内模式映像提供了_______独立性。
"Themoregadgetsthereare,the【C1】______thingsseemtoget."saidHonoreErvin,co-authorofTheEtiquetteGirls:ThingsYouN
Allcompetitiveskiandsnowboardingeventsnowtakeplacelargelyonman-madesnow.Unlikeitsnaturalcounterpart,themachine
最新回复
(
0
)