首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
admin
2018-06-27
87
问题
设α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
线性无关,其中α
1
,α
2
,…,α
s
是齐次方程组AX=0的基础解系.证明Aβ
1
,Aβ
2
,…,Aβ
t
线性无关.
选项
答案
用定义法证. 设c
1
Aβ
1
+c
2
Aβ
2
+…+c
t
Aβ
t
=0.则A(c
1
β
1
+c
2
β
2
+…+c
t
β
t
)=0即c
1
β
1
+c
2
β
2
+…+c
T
β
T
是AX=0的一个解.于是它可以用α
1
,α
2
,…,α
s
线性表示: c
1
β
1
+c
2
β
2
+…+c
t
β
t
=x
1
α
1
+t
2
α
2
+…+t
s
α
s
,再由α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
线性无关,得所有系数都为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Rlk4777K
0
考研数学二
相关试题推荐
设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(1)证明α1,α2,α3线性无关;(2)令P=(α1,α2,α3),求P-1AP.
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b—2,a+2b)T,β=(1,3,-3)T,试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)β可由α1,α2,α3唯一地线性表示,并求出表示式;
已知齐次线性方程组其中.试讨论a1,a2,…,an和b满足何种关系时,(1)方程组仅有零解;(2)方程组有非零解.在有非零解时,求此方程组的一个基础解系.
设A为n阶矩阵,对于齐次线性方程(I)Anx=0和(Ⅱ)An+1x=0,则必有
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程(ii)的解.
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明:方程组(α1,α2)x=β有唯一解,并求该解;
随机试题
病人身热面赤,咳吐大量脓血痰,腥臭异常,胸中烦满而痛,甚则喘不能卧,舌红,苔黄腻,脉滑数者,治疗应选
A.引起急性感染性心内膜炎最常见的微生物B.引起亚急性感染性心内膜炎最常见的微生物C.引起病毒性心肌炎最常见的微生物D.引起肝炎最常见的微生物E.引起溃疡性结肠炎最常见的微生物金黄色葡萄球菌
大青叶、板蓝根、青黛的共同功效是()。
根据《消防法》的规定,生产、储存和装卸易燃易爆危险物品的工厂、仓库和专用车站、码头,必须设置在城市边缘或者()的安全地带。
由于资源的开发利用而产生的废物严重威胁人们的健康,21世纪人类的生存环境将面临的挑战有( )。
企业对随同商品出售而单独计价的包装物进行会计处理时,该包装物的实际成本应结转到()。
根据《劳动合同法》,用人单位与劳动者协商一致,可以订立无固定期限劳动合同。关于签订无固定期限劳动合同的适用情况,下列说法不正确的是:( )。
对n个记录的文件进行二路归并排序,所需要的辅助存储空间为【】。
Thehorseandcarriageisathingofthepast,butloveandmarriagearestillwithusandstillcloselyinterrelated.MostAmer
ThreeBritishMuslimmenwerefoundguiltyof
最新回复
(
0
)