首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
admin
2018-06-27
58
问题
设α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
线性无关,其中α
1
,α
2
,…,α
s
是齐次方程组AX=0的基础解系.证明Aβ
1
,Aβ
2
,…,Aβ
t
线性无关.
选项
答案
用定义法证. 设c
1
Aβ
1
+c
2
Aβ
2
+…+c
t
Aβ
t
=0.则A(c
1
β
1
+c
2
β
2
+…+c
t
β
t
)=0即c
1
β
1
+c
2
β
2
+…+c
T
β
T
是AX=0的一个解.于是它可以用α
1
,α
2
,…,α
s
线性表示: c
1
β
1
+c
2
β
2
+…+c
t
β
t
=x
1
α
1
+t
2
α
2
+…+t
s
α
s
,再由α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
t
线性无关,得所有系数都为0.
解析
转载请注明原文地址:https://kaotiyun.com/show/Rlk4777K
0
考研数学二
相关试题推荐
设,其中c1,c2,c3,C4为任意常数,则下列向量组线性相关的为
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是
设函数f(x)在[0,π]上连续,且|f(x)dx=0,|f(x)cosxdx=0,试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ0)=0.
设0<x1<3,xn+1=(n=1,2,…),证明数列{xn}的极限存在,并求此极限.
设向量组α1,α2,…αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+α1,线性无关.
设向量组α1=(a,2,10)T,α2=(-2,1,5)T,α3=(-1,1,4)T,β=(1,b,c)T.试问:当a,b,c满足什么条件时,(1)β可由3线性表出,且表示唯一?(2)β不能由α1,α2,α3线性表出?(3)β可由α1,α
设向量β可由向量组α1,α2,…,αm线性表示,但不能由向量组(I):1,α2,…,αm-1线性表示,记向量组(Ⅱ):1,α2,…,αm-1,β,则
对于线性方程组讨论λ为何值时,方程组无解、有唯一解和有无穷多组解.在方程组有无穷多组解时,试用其导出组的基础解系表示全部解.
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明:方程组(α1,α2)x=β有唯一解,并求该解;
随机试题
()是从系统的整体出发去研究系统中各单元及单元之间关系的思想,是研究系统、开发建设系统的基本指导思想。
一种无结构的、直接的、个人的访问称为()
人民民主专政的本质特征是
A.结扎断端B.吻合C.伤口局部填塞D.缝合伤口,局部引流E.伤口不缝合
A.鼠疫B.流行性感冒C.百日咳D.麻风病E.流行性腮腺炎属于乙类传染病的是
价格的形成对参与项目建设和运营的供求各方产生影响。这体现了()。
说明如何从短期平均成本曲线推导出长期平均成本曲线,并说明长期平均成本曲线的经济含义及移动的原因。(2014年暨南大学803西方经济学)
将考生文件夹下BENA文件夹中的文件PRODUCT.WRI的“只读”属性撤销,并设置为“隐藏”属性。
WherewillEXPO2004beheld?
Gettingagoodnight’ssleephaslongbeenknowntoconsolidatetheday’smemories,movingthemfromshort-termstorageintolon
最新回复
(
0
)