首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(χ1,χ2,χ3)=χTAχ在正交变换χ=Qy下的标准形为y12+y22,且Q的第3列为 (Ⅰ)求矩阵A; (Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.
已知二次型f(χ1,χ2,χ3)=χTAχ在正交变换χ=Qy下的标准形为y12+y22,且Q的第3列为 (Ⅰ)求矩阵A; (Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.
admin
2017-06-26
117
问题
已知二次型f(χ
1
,χ
2
,χ
3
)=χ
T
Aχ在正交变换χ=Qy下的标准形为y
1
2
+y
2
2
,且Q的第3列为
(Ⅰ)求矩阵A;
(Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.
选项
答案
(Ⅰ)由条件知,A的特征值为1,1,0,且ξ=(1,0,1)
T
为A的属于特征值0的一个特征向量.设A的属于特征值1的特征向量为χ=(χ
1
,χ
2
,χ
3
)
T
,则ξ⊥χ,得χ
1
+χ
3
=0,取A的属于特征值1的两个正交的单位特征向量为[*](1,0,-1)
T
、(0,1,0)
T
. 得正交矩阵Q=[*] 则有Q
T
AQ=diag(1,1,0), 故A=Qdiag(1,1,0)Q
T
=[*] (Ⅱ)A+E的特征值为2,2,1都大于零,且A+E为实对称矩阵,所以A+E为正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/eVH4777K
0
考研数学三
相关试题推荐
设f(x),g(x)在[-a,a]上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).(Ⅰ)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx;(Ⅱ)利用(Ⅰ)的结论计算定积分∫π/2-π/2|sinx|arctane
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2=-8x1x2-2x12-10x22,在广告费用不限的情况下,求最
函数y=C1ex+C22e-2x+xex满足的一个微分方程是().
已知某产品的边际成本为5元/单位,生产该产品的固定成本为200元,边际收益是R’(q)=10-0.02q,则生产该产品多少件时可获得最大利润,这个最大利润是多少?
设随机变量X和Y的相关系数为0.9,若Z=X-0.4,则Y与Z的相关系数为__________.
设函数f(x)在(一∞,+∞)内连续,其导函数y=f’(x)的曲线如图所示,则f(x)有
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
设X1,X2,…,Xm与Y1,Y2,…,YN分别为来自相互独立的标准正态总体X与Y的简单随机样本,令则D(Z)=______.
随机试题
民事法律行为最基本的要素是()
常污染实验室组织培养的微生物是
特异性IgM水平升高有助于感染早期诊断的原因是
患者,男性,21岁。车祸头部外伤,昏迷30分钟后清醒,查体:神志清楚,右颞头皮血肿,神经系统检查无阳性发现。入院观察,5小时后又转入昏迷,伴右侧瞳孔逐渐散大,左侧肢体瘫痪。患者的临床诊断首先考虑是
室间隔缺损时,左、右心房均可见增大。()
()主要适用于城镇街道两侧商业用地的估价。
各国的行政法一般都有一部完整统一的法典。()
键盘输入数字5,以下代码的输出结果是()。n=eva](input(”请输入一个整数:”))s=0ifn>=5:n-=1s=4ifn
《计算机软件保护条例》中所称的计算机软件(简称软件)是指
【B1】【B8】
最新回复
(
0
)