首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=xixj. (1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式; (2)二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=xixj. (1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式; (2)二次型g(X)=XTAX是否与f(x1,x2,…,xn)合同?
admin
2019-08-28
42
问题
设A为n阶实对称可逆矩阵,f(x
1
,x
2
,…,x
n
)=
x
i
x
j
.
(1)记X=(x
1
,x
2
,…,x
n
)
T
,把二次型f(x
1
,x
2
,…,x
n
)写成矩阵形式;
(2)二次型g(X)=X
T
AX是否与f(x
1
,x
2
,…,x
n
)合同?
选项
答案
(1)f(X)=(x
1
,x
2
,…,x
n
)[*]A
*
X, 因为r(A)=n,所以|A|≠0,于是[*]A
*
=A
-1
,显然A
*
,A
-1
都是实对称矩阵. (2)因为A可逆,所以A的n个特征值都不是零,而A与A
-1
合同,故二次型f(x
1
,x
2
,…,x
n
)与g(X)=X
T
AX规范合同.
解析
转载请注明原文地址:https://kaotiyun.com/show/RvJ4777K
0
考研数学三
相关试题推荐
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,一2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量组的极大线性无关组可以是
“f(x)在点a连续”是|f(x)|在点a处连续的()条件.
设二维连续型随机变量(X,Y)在区域D上服从均匀分布,其中D={(x,y)|x+y|≤1,|x一y|≤1},求X的边缘密度fX(x)与在X=0条件下,关于Y的条件密度fY|X(y|0).
设有来自三个地区的各10各、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份.(1)求先抽到的一份是女生表的概率户;(2)已知后抽到的一份是男生表,求先抽到的一份是女生表的概
(1998年)设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所形成的旋转体体积为试求f(x)所满足的微分方程,并求该微分方程满足条件的解.
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x是某二阶线性非齐次微分方程的三个解,求此微分方程.
设有向量α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)可由α1,α2,α3惟一地线性表示,并求出表示式;(3
设A和B为可逆矩阵,X=为分块矩阵,则X-1=_______.
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求正交变换x=Qy,把f(x1,x2,x3)化成标准形;
随机试题
背景某大型高档商住小区项目,共计建筑面积22万m2,地上层数38层,其中地下为设备和停车用房,地上六层为商业建筑,其余为民用住宅。由于本工程位于中心城区,属于该市重点工程,施工单位对安全工作非常重视。施工总承包单位成立了项目部组织施工。施工过程中发生如下
渐霜风凄紧。
下面关于Word标题栏的叙述中,错误的是()
关于HELLP综合征,下列描述错误的是
钩体病早期出现的中毒症侯群有“三症状”,即_______、_______和全身乏力。
患者,女,37岁。月经量多,皮肤散在出血点,血象:血红蛋白120g/L,白细胞8×109/L,中性粒细胞0.7,淋巴细胞0.3,血小板50×109/L,骨髓片巨核细胞增多。应首先考虑的是()
在现代纸币制度下,引起货币失衡的原因主要是()。
【《战国策》】扬州大学2016年中国古代史真题
考虑如下两家公司:公司A从事房地产行业,股票的期望收益率和贝塔值分别为15%和1.1;公司B同时从事制药和融资租赁业务,两种业务的市值分别占B公司总市值的1/3和2/3,公司B的股票期望回报率和贝塔值分别为20%和1.6。假设B公司融资租赁业务的期望收
如果某地公共政策制定是正确的并且执行有力,则不会出现大规模上访。只有相关决策人不关心群众,才会出现大规模上访。某地公共政策制定是正确的,相关决策人也心系群众,深入实际搞调查研究,当地群众对此是满意的。根据以上信息,得不出以下哪项?
最新回复
(
0
)