首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个n阶矩阵,先交换A的第i列与第j列,然后再交换第i行与第j行得到的矩阵记为B,则下列五个关系: (1)|A|=|B|; (2)r(A)=r(B); (3)AB; (4)A~B; (5)AB 中正确的有( )。
设A是一个n阶矩阵,先交换A的第i列与第j列,然后再交换第i行与第j行得到的矩阵记为B,则下列五个关系: (1)|A|=|B|; (2)r(A)=r(B); (3)AB; (4)A~B; (5)AB 中正确的有( )。
admin
2020-04-22
36
问题
设A是一个n阶矩阵,先交换A的第i列与第j列,然后再交换第i行与第j行得到的矩阵记为B,则下列五个关系:
(1)|A|=|B|; (2)r(A)=r(B); (3)A
B; (4)A~B; (5)A
B
中正确的有( )。
选项
A、(1),(2)
B、(1),(2),(3)
C、(1),(3),(5)
D、(1),(2),(3),(4),(5)
答案
D
解析
解 由题设有E
ij
AE
ij
=B,E
ij
有些什么性质呢?
(1)|E
ij
|=-1,因而|E
ij
||E
ij
|=1,故
|E
ij
||A||E
ij
|=|B|, 即 |A|=|B|。
(2)因|E
ij
|≠0,故E
ij
可逆,所以r(E
ij
A)=r(A),r(AE
ij
)=r(A),故
r(B)=r(E
ij
AE
ij
)=r(AE
ij
)=r(A)。
(3)由E
ij
AE
ij
=B说明了A
B。
(4)因E
ij
-1
=E
ij
,故E
ij
AE
ij
=E
ij
-1
AE
ij
=B,所以A~B。
(5)因E
ij
=E
ij
T
,故E
ij
AE
ij
=E
ij
T
AE
ij
=B,所以A
B。
因此,选项(D)正确。
转载请注明原文地址:https://kaotiyun.com/show/S7S4777K
0
考研数学一
相关试题推荐
微分方程xy’’+3y’=0的通解为______.
设直线L:及平面π:4x-2y+z一2=0,则直线L().
设A=E一ξξT,其中E是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
(2008年试题,一)随机变量X一N(0,1),y一N(1,4)且相关系数ρx,y=1,则().
设为三维空间的两组基,则从基ε1,ε2,ε3到基e1,e2,e3的过渡矩阵为________.
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2e2的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A
若二次曲面的方程为χ2+3y2+z2+2aχy+2χz+2yz=4,经正交变换化为y12+4z12=4,则a=________.
求由曲线y=4一x2与x轴围成的部分绕直线x=3旋转一周所成的几何体的体积.
计算I=(x+3z2)dydz+(x3z2+yz)dzdx一3y2dxdy,其中∑为z=2-在z=0上方部分的下侧.
随机试题
下列选项中属于因果关系的是()
产后出血的最主要原因是
糖尿病是一组以高血糖为特征的代谢性疾病。高血糖则是由于胰岛素分泌缺陷或其生物作用受损,或两者兼有引起。糖尿病时长期存在的高血糖,导致各种组织,特别是眼、肾、心脏、血管、神经的慢性损害、功能障碍。目前尚无根治糖尿病的方法,但通过多种治疗手段可以控制好糖尿病。
中医学里的脏腑,除了指解剖的实质脏器,更重要的是对人体生理功能和病理变化的概括。中医学认为,人的有机整体是以五脏为核心构成的一个极为复杂的统一体,它以五脏为主,配合六腑,以经络作为网络,联系躯体组织器官,形成5大系统。利小便而实大便的理论依据是
调整盘盈或盘亏财产的账面价值时,处理前“待处理财产损溢”的借方余额反映()。
下列关于独立估计的说法中,错误的有()。
学生干部选举前,有的家长给班主任陈老师送束花要求照顾,陈老师拒绝。这件事体现了陈老师()。
阅读下面的文言文,完成下列例题。张佶,字仲雅,本燕人,后徙华州渭南。初名志言,后改焉。父防,殿中少监。佶少有志节,始用荫补殿前承旨,以习儒业,献文求试,换国子监丞。迁著作佐郎、监三白渠、知泾阳县。端拱初,为太子右赞善大夫。曹州民有被诬杀人者,诏往
Whoisthespeaker?
IntargetingconsumerswhatPepsicallsthe"PowerofOne"makesperfectsense:it’sallaboutmakingsure.thateverybodywhob
最新回复
(
0
)