首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ξ1,ξ2,ξ3,ξ1﹢aξ2-2ξ3均是非齐次线性方程组Ax=b的解,则对应齐次线性方程组Ax=0有解 ( )
设ξ1,ξ2,ξ3,ξ1﹢aξ2-2ξ3均是非齐次线性方程组Ax=b的解,则对应齐次线性方程组Ax=0有解 ( )
admin
2018-12-21
83
问题
设ξ
1
,ξ
2
,ξ
3
,ξ
1
﹢aξ
2
-2ξ
3
均是非齐次线性方程组Ax=b的解,则对应齐次线性方程组Ax=0有解 ( )
选项
A、η
1
=2ξ
1
﹢aξ
2
﹢ξ
3
.
B、η
2
=-2ξ
1
﹢3ξ
2
-2aξ
3
.
C、η
3
=aξ
1
﹢2ξ
2
-ξ
3
.
D、η
4
=3ξ
3
-2aξ
2
﹢ξ
3
.
答案
D
解析
由题设条件Aξ
i
=b,2.i=1,2,3及A(ξ
1
﹢aξ
22
-2ξ
3
)=b﹢ab-2b=b,得(1﹢a-2)b=b,b≠0,
即1﹢a-2=1,故a=2.
当a=2时,看是否满足Aη
i
=0,i=1,2,3,4.
Aη
1
=A(2ξ
1
﹢2ξ
2
﹢ξ
3
)=5b≠0,
Aη
2
=A(-2ξ
1
﹢3ξ
2
-4ξ
3
)=-3b≠0,
Aη
3
=A(2ξ
1
﹢2ξ
2
-ξ
2
)=3b≠0,
Aη
4
=A(3ξ
1
-4ξ
2
﹢ξ
3
)=0.
故η
4
是对应齐次线性方程组Ax=0的解,故应选(D).
转载请注明原文地址:https://kaotiyun.com/show/SAj4777K
0
考研数学二
相关试题推荐
(2014年)设α1,α2,α3均为3维向量,则对任意常数k,l,向量组α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的【】
(2004年)把χ→0+时的无穷小量α=∫0χcost2dt,β=,γ=sint3dt排列起来,使排在后面的是前面一个的高阶无穷小,则正确的排列次序是【】
(1998年)设(2E-C-1B)AT/C-1,其中E是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,求A.
(2003年)设三阶方阵A、B满足A2B-A-B=E,其中E为三阶单位矩阵,A=,则|B|=_______.
(1995年)设f(χ)和φ(χ)在(-∞,+∞)内有定义,f(χ)为连续函数,且f(χ)≠0,φ(χ)有间断点,则
(1999年)已知函数y=,求(1)函数的增减区间及极值;(2)函数图形的凹凸区间及拐点;(3)函数图形的渐近线.
(1997年)就k的不同取值情况,确定方程χ-sinχ=k在开区间(0,)内根的个数,并证明你的结论.
(1992年)函数y=χ+2cosχ在区间[0,]上的最大值为_______.
(I)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(B)-f(A)=f’(ξ)(b一a);(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
[*]所以原式=(e一1).
随机试题
《临证指南医案》指出“内风”的机理均属于
女性,43岁,眼睑及双下肢水肿2个月,既往有2型糖尿病3年,3年前血糖正常,尿常规蛋白阳性、尿红细胞满视野,24小时尿蛋白定量3.9g,血浆白蛋白27.2g/L,血肌酐88μmmol/L。
照射角与体层面厚度关系的叙述,正确的是
患儿,6岁,高热不退,烦躁谵妄,皮肤疹点密集成片,色泽紫暗,甚则神昏,抽搐,舌红绛起刺,苔黄燥,脉数。方剂首选
从活性污泥曝气池取混合液300ml,在量筒内静置沉降30min,沉淀污泥体积60ml,则该污泥的污泥沉降比为()。
某银行行长要求其分行一名信贷经理关照一笔贷款,而信贷经理发现该笔贷款明显不符合规定,则该信贷经理的正确做法有()。(2011年)
一、注意事项1.本题本由给定资料与作答要求两部分构成。考试时限为150分钟。其中,阅读给定资料参考时限为40分钟。作答参考时限为110分钟。2.请在题本、答题卡指定位置上用黑色字迹的钢笔或签字笔填写自己的姓名和准考证号,并用2B铅笔在
下列语句分别是不同程序中的第一个输入输出语句,若去掉其中的’’<<left",输出效果将发生变化的是()。
Whatistheconversationmainlyabout?
A、Earlyadoptionmakesforcloserparent-childrelationship.B、Mostpeopleprefertoadoptchildrenfromoverseas.C、Understandi
最新回复
(
0
)