首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在c∈(a,b),使得f(c)=0;存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)=0(i=1,2);存在ξ∈(a,
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在c∈(a,b),使得f(c)=0;存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)=0(i=1,2);存在ξ∈(a,
admin
2022-10-09
26
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫
a
b
f(x)dx=0.证明:存在c∈(a,b),使得f(c)=0;存在ξ
i
∈(a,b)(i=1,2),且ξ
1
≠ξ
2
,使得f’(ξ
i
)+f(ξ
i
)=0(i=1,2);存在ξ∈(a,b),使得f"(ξ)=f(ξ);存在η∈(a,b),使得f"(η)-3f’(η)+2f(η)=0.
选项
答案
令F(x)=∫
a
x
f(t)dt,则F(x)在[a,b]上连续,在(a,b)内可导,且F’(x)=f(x).故存在c∈(a,b),使得∫
a
b
f(x)dx=F(b)-F(a)=F’(c)(b-a)=f(c)(b-a)=0,即f(c)=0.令h(x)=e
x
f(x),因为h(a)=h(c)=h(b)=0,所以由罗尔定理,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得f’(ξ
1
)=f’(ξ
2
)=0,而h’(x)=e
x
[f’(x)+f(x)]且e
x
≠0,所以f’(ξ
i
)+f(ξ
i
)=0(i=1,2).令φ(x)=e
-x
[f’(x)+f(x)],φ(ξ
1
)=φ(ξ
2
)=0,由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)∈(a,b),使得φ’(ξ)=0,而φ’(x)=e
-x
[f"(x)-f(x)]且e
-x
≠0,所以f"(ξ)=f(ξ).令g(x)=e
-x
f(x),g(a)=g(c)=g(b)=0,由罗尔定理,存在η
1
∈(a,c),η
2
∈(c,b),使得g’(η
1
)=g’(η
2
)=0,而g’(x)=e
-x
[f’(x)-f(x)]且e
-x
≠0,所以f’(η
1
)-f(η
1
)=0,f’(η
2
)-f(η
2
)=0.令φ(x)=e
-2x
[f’(x)-f(x)],φ(η
1
)=φ(η
2
)=0,由罗尔定理,存在η∈(η
1
,η
2
)∈(a,b),使得φ’(η)=0,而φ’(x)=e
-2x
[f"(x)-3f’(x)+2f(x)]且e
-2x
≠0,所以f"(η)-3f’(η)+2f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/SKR4777K
0
考研数学三
相关试题推荐
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记若α,β正交且均为单位向量,证明f在正交变换下的标准形为2y12+y22.
已知齐次线性方程组有非零解,且是正定矩阵.求xTx=1,xTAx的最大值和最小值.
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足tr(A)=-6.AB=C,其中求出该二次型f(x1,x2,x3).
设矩阵求矩阵P,使(AP)T(AP)为对角矩阵.
设二次型f=x12+x22+x32+2αx1x2+2βx2x3+2x1x3经正交变换x=Py化成f=y22+2y32,其中x=(x1,x2,x3)T和y=(y1,y2,y3)T都是3维列向量,P是3阶正交矩阵.试求常数α,β
设有Am×n,Bn×m,已知En-AB可逆,证明En-BA可逆,且(En-BA)-1=En+B(En-AB)-1A.
设f(x)在x>0上有定义,对任意的正实数x,y,f(xy)=xf(y)+yf(x).f’(1)=2,试求f(x).
袋中有10个大小相等的球,其中6个红球4个白球,随机抽取2个,每次取1个,定义两个随机变量如下:就下列两种情况,求(X,Y)的联合分布律:(1)第一次抽取后放回;(2)第一次抽取后不放回.
求函数f(x)=ln(1-x-2x2)的幂级数,并求出该幂级数的收敛域.
随机试题
A、Strengthenourwillpower.B、Replaceprocessedfoodswithhealthyfoods.C、Limitourconsumptionofprocessedfoodstotheleas
患者,男,46岁。平日纳少便溏.饮食稍有不慎,即腹泻频频。用药宜首选()
A.庆大霉素B.青霉素C.红霉素D.氧氟沙星E.甲硝唑克雷白杆菌肺炎首选
选择性作用于β1受体的药物是
票据和结算凭证的金额、出票或签发日期、收款人名称更改后无效,银行不予受理。()
在公债的发行方式中,必须通过金融市场或金融机构发行的有()。
你手头上有许多重要的工作,你的领导又交给你一件任务,而你没有多余的时间,你如何处理这件事情?
小张性情急躁,成就动机水平高,具有很强的时间紧迫感和竞争意识,他的人格类型属于()
下列选项中,完全不属于社会意识形态的是()
英国的剧作家莎士比亚曾经说过“仅仅一个人独善其身,那实在是一种浪费。上天生下我们,是要把我们当做火炬,不是照亮自己,而是普照世界;因为我们的德性尚不能推及他人,那就等于没有一样”。阿尔伯特.爱因斯坦说:一个人的价值,应当看他贡献什么,而不是看他取得什么?请
最新回复
(
0
)