首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3×3矩阵,α1,α2,α3是3维列向量,且线性无关,已知 Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)证明Aα1,Aα2,Aα3线性无关;(2)求|A|.
设A是3×3矩阵,α1,α2,α3是3维列向量,且线性无关,已知 Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2. (1)证明Aα1,Aα2,Aα3线性无关;(2)求|A|.
admin
2018-09-20
19
问题
设A是3×3矩阵,α
1
,α
2
,α
3
是3维列向量,且线性无关,已知
Aα
1
=α
2
+α
3
,Aα
2
=α
1
+α
3
,Aα
3
=α
1
+α
2
.
(1)证明Aα
1
,Aα
2
,Aα
3
线性无关;(2)求|A|.
选项
答案
(1)[Aα
1
,Aα
2
,Aα
3
]=[α
2
+α
3
,α
1
+α
3
,α
1
+α
2
]=[α
1
,α
2
,α
3
][*][α
1
,α
2
,α
3
]C,可得|C|=[*]=2≠0,C是可逆矩阵,故Aα
1
,Aα
2
,Aα
3
和α
1
,α
2
,α
3
是等价向量组,故Aα
1
,Aα
2
,Aα
3
线性无关. (2)[Aα
1
,Aα
2
,Aα
3
]=A[α
1
,α
2
,α
3
]=[α
1
,α
2
,α
3
][*] 两边取行列式,得[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/SRW4777K
0
考研数学三
相关试题推荐
设A是3阶矩阵,且各行元素之和都是5,则A必有特征向量_______.
设A是3阶不可逆矩阵,α1,α2是Ax=0的基础解系,α3是属于特征值λ=1的特征向量,下列不是A的特征向量的是
设f(x)连续,证明:
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
将一颗骰子重复投掷n次,随机变量X表示出现点数小于3的次数,Y表示出现点数不小于3的次数.求3X+Y与X-3Y的相关系数.
设齐次线性方程组只有零解,则a满足的条件是______.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2…+(n一1)αn一1=0,b=α1+α2+…+αn.证明方程组AX=b有无穷多个解;
设α1=(1)a,b为何值时,β不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,β可唯一表示为α1,α2,α3,α4的线性组合?
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
随机试题
著名的“旗亭画壁”故事中的夺冠之作是【】
A.肺炎链球菌B.难辨梭状芽胞杆菌C.结核分枝杆菌D.铜绿假单胞菌E.军团菌革兰染色阳性的细菌是
皮肤被硫酸、盐酸、硝酸灼伤应口服阿片类药物中毒应
混凝土或钢结构处于地下水位以下时,以下说法正确的是()。
单位开展会计电算化的基本条件是()。
法国A公司是国际知名的电气跨国公司,十年前通过设立中国分公司进入中国市场。针对中国成为世界加工厂和世界经济的有力推动者之一的趋势不断加强,A公司开始着手研究在中国的发展战略。经过十年充分的战略情报研究和战略保障准备,从2005年开始在中国实施并购。在
一位家长抱怨:李老师隔三差五给家长打电话,每次都把我们狠狠地批判一顿,还经常让我们到学校听他训话。李老师的做法()。
具有强烈的好奇心、浓厚的学习兴趣、积极主动、认真专注、不怕困难、敢于探究和尝试、乐于想象和创造等,这些均是良好的()的重要体现。
著作权人在其著作权受到不法侵害时,有权要求()。
李某为公司仓库保管员。某日,两歹徒为逼李某交出仓库钥匙而持刀追打李某,李某被打成重伤,无奈之中李某抢了路边正在停车的黄某的摩托车逃走。李某抢走摩托车的行为:
最新回复
(
0
)