首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
AX=0和BX=0都是n元方程组,下列断言正确的是( ).
AX=0和BX=0都是n元方程组,下列断言正确的是( ).
admin
2018-06-27
55
问题
AX=0和BX=0都是n元方程组,下列断言正确的是( ).
选项
A、AX=0和BX=0同解
r(A)=r(B).
B、AX=0的解都是BX=0的解
r(A)≤r(B).
C、AX=0的解都是BX=0的解
r(A)≥r(B).
D、r(A)≥r(B)
AX=0的解都是BX=0的解.
答案
C
解析
AX=0和BX=0同解
(A)=r(B),但r(A)=r(B)推不出AX=0和BX=0同解,排除(A)
AX=0的解都是BX=0的解,则AX=0的解集合
BX=0的解集合,于是n-r(A)≤n-r(B),即
r(A)≥r(B).(C)对,(B)不对.
n-r(A)≤n-r(B)推不出AX=0的解集合
BX=0的解集合,(D)不对.
转载请注明原文地址:https://kaotiyun.com/show/Sak4777K
0
考研数学二
相关试题推荐
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=
设曲线L的参数方程为x=φ(t)=t一sint,y=ψ(t)=1一cost(0≤t≤2π)求证:由L的参数方程确定连续函数y=y(x),并求它的定义域;
已知α1,α2,α3,α4是3维非零向量,则下列命题中错误的是
曲线的凸区间是_________.
设A3×3=[α1,α2,α3],方程组Ax=β有通解kξ+η=kE1,2,一3]T+[2,一1,1]T,其中k是任意常数.证明:方程组[α1+α2+α3+β,α1,α2,α3]x=β有无穷多解,并求其通解.
设ξ1=[1,一2,3,2]T,ξ2=[2,0,5,一2]T是齐次线性方程组Ax=0的基础解系,则下列向量中是齐次线性方程组Ax=0的解向量的是()
设证明:f(x,y)在点(0,0)处的两个偏导数fx’(0,0)与fy’(0,0)都存在,函数f(x,y)在点(0,0)处也连续;
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
求抛物面z=1+x2+y2的一个切平面,使该切平面与抛物面及圆柱面(x一1)2+y2=1围成的立体的体积最小,并求出最小体积.
设有8只球,其中自球和黑球各4只,从中任取4只放人甲盒,余下的4只放入乙盒,然后分别在两盒中任取1只球,颜色正好相同.试问放人甲盒的4只球中有几只白球的概率最大?
随机试题
按照账页格式分类,账簿可以分为()
“寒热”是
高血压急症的特征是
甲今年17岁。在一次盗窃案中,为他人放风,且在盗窃后分得赃款500元,但这一事件被其母发现,动员甲投案自首,甲即在当日由母亲陪同到公安局自首归案,并退回赃款,还向公安机关揭发了同案犯的犯罪事实。请问人民法院应如何对甲进行判处?()
下列哪类住宅可以不进行无障碍设计?
(2012年)企业进行固定制造费用差异分析时可以使用三因素分析法。下列关于三因素分析法的说法中,正确的是()。
在大多数情况下,不是影响战略计划系统设计的主要因素是()。
简述担保物权的特征。[首师大2012年研]
如果删除一个非零尤符号二进制偶整数后的2个0,则此数的值为原数()。
DriedFoodsCenturiesago,mandiscoveredthatremovingmoisture(51)foodhelpedtopreserveit,andthattheeasiestwaytod
最新回复
(
0
)