首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,3,5,一1)T,α2=(2,7,a,4)T,α3=(5,17,一1,7)T. ①若α1,α2,α3线性相关,求a. ②当a=3时,求与α1,α2,α3都正交的非零向量α4. ③设a=3,α4是与α1,α2,α3都正交的非零向量,证明α1,α
设α1=(1,3,5,一1)T,α2=(2,7,a,4)T,α3=(5,17,一1,7)T. ①若α1,α2,α3线性相关,求a. ②当a=3时,求与α1,α2,α3都正交的非零向量α4. ③设a=3,α4是与α1,α2,α3都正交的非零向量,证明α1,α
admin
2018-05-23
89
问题
设α
1
=(1,3,5,一1)
T
,α
2
=(2,7,a,4)
T
,α
3
=(5,17,一1,7)
T
.
①若α
1
,α
2
,α
3
线性相关,求a.
②当a=3时,求与α
1
,α
2
,α
3
都正交的非零向量α
4
.
③设a=3,α
4
是与α
1
,α
2
,α
3
都正交的非零向量,证明α
1
,α
2
,α
3
,α
4
可表示任何一个4维向量.
选项
答案
①α
1
,α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
)<3. [*] 得a=一3. ②与α
1
,α
2
,α
3
都正交的非零向量即齐次方程组 [*] 的非零解,解此方程组: [*] 解得α
4
=c(19,一6,0,1)
T
,c≠0. ③只用证明α
1
,α
2
,α
3
,α
4
线性无关,此时对任何4维向量α,有α
1
,α
2
,α
3
,α
4
,α线性相关,从而α可以用αα
1
,α
2
,α
3
,α
4
线性表示. 由①知,a=3时,α
1
,α
2
,α
3
线性无关,只用证明α
4
不能用α
1
,α
2
,α
3
线性表示. 用反证法,如果α
4
能用α
1
,α
2
,α
3
线性表示,设α
4
=c
1
α
1
+c
2
α
2
+c
3
α
3
,则 (α
4
,α
4
)=(α
4
,c
1
α
1
+c
2
α
2
+c
3
α
3
)=c
1
(α
4
,α
1
)+c
2
(α
4
,α
2
)+c
3
(α
4
,α
3
)=0. 得α
4
=0,与α
4
是非零向量矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/SdX4777K
0
考研数学三
相关试题推荐
2
反常积分
设正数列{an}满足
设曲线y=y(x)上任意一点的切线在y轴上的截距与法线在x轴上的截距之比为3,求y(x).
证明:当0<a<b时,bsinb+2cosb+πb>asina+2cosa+πa.
证明:当x>0时,有
设随机变量X1,X2,…,X100独立同分布,且EXi=0,DXi=10,i=1,2,…,100,令==_________.
已知3维向量组α1,α2,α3线性无关,则向量组α1-α2,α2-kα3,α3-α1也线性无关的充要条件是k_________.
设f(x)为连续函数,证明:∫0πxf(sinx)dx=
随机试题
围生期包括胎儿期一部分和婴儿期一部分,国内普遍采用的定义是
蜘蛛痣的特征应除外
在经济评价指标中,以下()属于动态指标。
工资数据替换是将符合条件的人员的某个工资项目的数据,统一替换成某个数据。()
L公司是一家知名的粤菜餐厅,在全国有100多家门店。为了在行业中始终保持领先地位,公司在内部设立了研究所,紧跟市场需求变化,定期开发特色菜上市,赢得了消费者好评。根据上述描述,L公司采取的发展战略类型是()。
冬天上学,某学生既怕寒冷而不愿意起床,又怕因迟到而受到老师的批评,由此产生的冲突是()。
幼儿园老师设计了一个摸彩球游戏,在一个不透明的盒子里混放着红、黄两种颜色的小球,它们除了颜色不同,形状、大小均一致。已知随机摸取一个小球,摸到红球的概率为三分之一。如果从中先取出3红7黄共10个小球,再随机摸取一个小球,此时摸到红球的概率变为五分之二,那么
设有关键码序列(Q,G,M,Z,A,N,B,P,X,H,Y,S,T,L,K,E),采用堆排序法进行排序,经过初始建堆后关键码值A在序列中的序号是
关于字节I/O流,下列叙述不正确的是
Low-agedOverseasStudentsLow-agedoverseasstudyhasbecomeamajorconcernbythemediaandparentsofthestudents,and
最新回复
(
0
)